powered by
Compute Kullback-Leibler information.
klinfo(distg = 1, paramg = c(0, 1), distf = 1, paramf, xmax = 10)
number of function evaluation.
delta.
Kullback-Leibler information, \(I(g;f)\).
integration of \(g(y)\) over [-xmax, xmax].
xmax
function for the true density (1 or 2).
parameter vector of true density.
function for the model density (1 or 2).
parameter vector of the model density.
upper limit of integration. lower limit xmin = -xmax.
Kitagawa, G. (2020) Introduction to Time Series Modeling with Applications in R. Chapman & Hall/CRC.
# g:Gauss, f:Gauss klinfo(distg = 1, paramg = c(0, 1), distf = 1, paramf = c(0.1, 1.5), xmax = 8) # g:Gauss, f:Cauchy klinfo(distg = 1, paramg = c(0, 1), distf = 2, paramf = c(0, 1), xmax = 8)
Run the code above in your browser using DataLab