data(synthetic.tseries)
#Create the true solution, for this dataset, there are three series of each model
true_cluster <- c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6)
#test a dissimilarity metric and a cluster algorithm
intperdist <- diss( synthetic.tseries, "INT.PER") #create the distance matrix
#use hierarchical clustering and divide the tree in 6 clusters
intperclust <- cutree( hclust(intperdist), 6 )
#use a cluster simmilarity index to rate the solution
cluster.evaluation( true_cluster, intperclust)
#test another dissimilarity metric and a cluster algorithm
acfdist <- diss( synthetic.tseries, "ACF", p=0.05)
acfcluster <- pam( acfdist, 6 )$clustering #use pam clustering to form 6 clusters
cluster.evaluation( true_cluster, acfcluster)
# \donttest{
#test another dissimilarity metric and a cluster algorithm
chernoffdist <- diss( synthetic.tseries, "SPEC.LLR")
chernoffclust <- pam( chernoffdist, 6 )$clustering
cluster.evaluation( true_cluster, chernoffclust)
# }
Run the code above in your browser using DataLab