TSDistances(x, y, tx, ty, distance, ...)
ts
, zoo
or xts
object containing the first time series.ts
, zoo
or xts
object containing the second time series.x
. Only necessary if x
is a numeric vector and the sampling index is not constant.y
. Only necessary if y
is a numeric vector and the sampling index is not constant."euclidean"
, "manhattan"
, "minkowski"
, "infnorm"
, "ccor"
, "sts"
, "dtw"
, "keogh.lb"
, "edr"
,x
and y
is calculated. x
and y
can be saved in a numeric vector or a ts
, zoo
or xts
object. The following distance methods are supported:
EuclideanDistance
ManhattanDistance
MinkowskiDistance
InfNormDistance
CCorDistance
STSDistance
DTWDistance
. Uses thedtw
).LBKeoghDistance
EDRDistance
ERPDistance
LCSSDistance
FourierDistance
TquestDistance
DissimDistance
ACFDistance
. Uses thediss.ACF
).PACFDistance
. Uses thediss.PACF
).ARLPCCepsDistance
. Uses thediss.AR.LPC.CEPS
).ARMahDistance
. Uses thediss.AR.MAH
).ARPicDistance
. Uses thediss.AR.PIC
).CDMDistance
. Uses thediss.CDM
).CIDDistance
. Uses thediss.CID
).CorDistance
. Uses thediss.COR
).CortDistance
. Uses thediss.CORT
).WavDistance
. Uses thediss.DWT
).IntPerDistance
. Uses thediss.INT.PER
).PerDistance
. Uses thediss.PER
).MindistSaxDistance
. Uses thediss.MINDIST.SAX
).NCDDistance
. Uses thediss.NCD
).PredDistance
. Uses thediss.PRED
).SpecGLKDistance
. Uses thediss.SPEC.GLK
).SpecISDDistance
. Uses thediss.SPEC.ISD
).SpecLLRDistance
. Uses thediss.SPEC.LLR
).PDCDistance
. Uses thepdcDist
).FrechetDistance
. Uses thedistFrechet
).# The objects zoo.series1 and zoo.series2 are two
# zoo objects that save two series of length 100.
data(zoo.series1)
data(zoo.series2)
# For information on their generation and shape see
# help page of example.series.
help(example.series)
# The distance calculation for these two series is done
# as follows:
TSDistances(zoo.series1, zoo.series2, distance="infnorm")
TSDistances(zoo.series1, zoo.series2, distance="cor", beta=3)
TSDistances(zoo.series1, zoo.series2, distance="dtw", sigma=20)
Run the code above in your browser using DataLab