Learn R Programming

TargetScore (version 1.10.0)

vmax: Variational-Maximimization in VB-EM (Internal function)

Description

The M step in VB-EM iteration.

Usage

vmax(X, model, prior)

Arguments

X
D x N numeric vector or matrix of N observations (columns) and D variables (rows)
model
List containing model parameters (see vbgmm)
prior
List containing the hyperparameters defining the prior distributions

Value

model
A list containing the updated model parameters including alpha (Dirichlet), m (Gaussian mean), kappa (Gaussian variance), v (Wishart degree of freedom), M (Wishart precision matrix).

References

Mo Chen (2012). Matlab code for Variational Bayesian Inference for Gaussian Mixture Model. http://www.mathworks.com/matlabcentral/fileexchange/35362-variational-bayesian-inference-for-gaussian-mixture-model

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer, Information Science and Statistics. NY, USA. (p474-486)

See Also

vbgmm

Examples

Run this code
X <- c(rnorm(100,mean=2), rnorm(100,mean=3))
tmp <- vbgmm(X, tol=1e-3)
names(tmp$full.model)

Run the code above in your browser using DataLab