data(data_simu_TcGSA)
tcgsa_sim_1grp <- TcGSA.LR(expr=expr_1grp, gmt=gmt_sim, design=design,
subject_name="Patient_ID", time_name="TimePoint",
time_func="linear", crossedRandom=FALSE)
plotPat.1GS(expr=expr_1grp, TimePoint=design$TimePoint,
Subject_ID=design$Patient_ID, gmt=gmt_sim,
geneset.name="Gene set 4",
clustering=FALSE,
time_unit="H",
lab.cex=0.7)
## Not run:
# plotPat.1GS(expr=expr_1grp, TimePoint=design$TimePoint,
# Subject_ID=design$Patient_ID, gmt=gmt_sim,
# geneset.name="Gene set 4",
# clustering=FALSE, baseline=1,
# time_unit="H",
# lab.cex=0.7)
# ## End(Not run)
## Not run:
# colval <- c(hsv(0.56, 0.9, 1),
# hsv(0, 0.27, 1),
# hsv(0.52, 1, 0.5),
# hsv(0, 0.55, 0.97),
# hsv(0.66, 0.15, 1),
# hsv(0, 0.81, 0.55),
# hsv(0.7, 1, 0.7),
# hsv(0.42, 0.33, 1)
# )
# n <- length(colval); y <- 1:n
# op <- par(mar=rep(1.5,4))
# plot(y, axes = FALSE, frame.plot = TRUE,
# xlab = "", ylab = "", pch = 21, cex = 8,
# bg = colval, ylim=c(-1,n+1), xlim=c(-1,n+1),
# main = "Color scale"
# )
# par(op)
#
# plotPat.1GS(expr=expr_1grp, TimePoint=design$TimePoint,
# Subject_ID=design$Patient_ID, gmt=gmt_sim,
# geneset.name="Gene set 5",
# time_unit="H",
# title="",
# gg.add=list(scale_color_manual(values=colval)),
# lab.cex=0.7
# )
# ## End(Not run)
## Not run:
# plotPat.1GS(expr=tcgsa_sim_1grp$Estimations, TimePoint=design$TimePoint,
# Subject_ID=design$Patient_ID, gmt=gmt_sim,
# geneset.name="Gene set 3",
# time_unit="H",
# lab.cex=0.7
# )
# ## End(Not run)
Run the code above in your browser using DataLab