n
from 4 different distributions and
plots histograms of the means along with a normal curve with matching
mean and standard deviation. Creating the plots for different values
of n
demonstrates the Central Limit Theorem.clt.examp(n = 1, reps = 10000, nclass = 16, norm.param=list(mean=0,sd=1),
gamma.param=list(shape=1, rate=1/3), unif.param=list(min=0,max=1),
beta.param=list(shape1=0.35, shape2=0.25))
rnorm
rgamma
runif
rbeta
norm.param
, gamma.param
, unif.param
, and
beta.param
arguments can be used to change the parameters of
the generating distributions.
Running the function with n
=1 will show the populations. Run
the function again with n
at higher values to show that the
sampling distribution of the uniform quickly becomes normal and the
exponential and beta distributions eventually become normal (but much
slower than the uniform).rnorm
, rexp
, runif
,
rbeta
clt.examp()
clt.examp(5)
clt.examp(30)
clt.examp(50)
Run the code above in your browser using DataLab