# NOT RUN {
#############################
## Example 1: ##
## Stratified Two-stage SI ##
#############################
data('BigCity')
FrameI <- BigCity %>% group_by(PSU) %>%
summarise(Stratum = unique(Stratum),
Persons = n(),
Income = sum(Income),
Expenditure = sum(Expenditure))
attach(FrameI)
sizes = FrameI %>% group_by(Stratum) %>%
summarise(NIh = n(),
nIh = 2,
dI = NIh/nIh)
NIh <- sizes$NIh
nIh <- sizes$nIh
samI <- S.STSI(Stratum, NIh, nIh)
UI <- levels(as.factor(FrameI$PSU))
sampleI <- UI[samI]
FrameII <- left_join(sizes, BigCity[which(BigCity$PSU %in% sampleI), ])
attach(FrameII)
HHdb <- FrameII %>%
group_by(PSU) %>%
summarise(Ni = length(unique(HHID)))
Ni <- as.numeric(HHdb$Ni)
ni <- ceiling(Ni * 0.1)
ni
sum(ni)
sam = S.SI(Ni[1], ni[1])
clusterII = FrameII[which(FrameII$PSU == sampleI[1]), ]
sam.HH <- data.frame(HHID = unique(clusterII$HHID)[sam])
clusterHH <- left_join(sam.HH, clusterII, by = "HHID")
clusterHH$dki <- Ni[1]/ni[1]
clusterHH$dk <- clusterHH$dI * clusterHH$dki
data = clusterHH
for (i in 2:length(Ni)) {
sam = S.SI(Ni[i], ni[i])
clusterII = FrameII[which(FrameII$PSU == sampleI[i]), ]
sam.HH <- data.frame(HHID = unique(clusterII$HHID)[sam])
clusterHH <- left_join(sam.HH, clusterII, by = "HHID")
clusterHH$dki <- Ni[i]/ni[i]
clusterHH$dk <- clusterHH$dI * clusterHH$dki
data1 = clusterHH
data = rbind(data, data1)
}
sum(data$dk)
attach(data)
estima <- data.frame(Income, Expenditure)
area <- as.factor(PSU)
stratum <- as.factor(Stratum)
E.UC(stratum, area, dk, estima)
################################
## Example 2: ##
## Self weighted Two-stage SI ##
################################
data('BigCity')
FrameI <- BigCity %>% group_by(PSU) %>%
summarise(Stratum = unique(Stratum),
Households = length(unique(HHID)),
Income = sum(Income),
Expenditure = sum(Expenditure))
attach(FrameI)
sizes = FrameI %>% group_by(Stratum) %>%
summarise(NIh = n(),
nIh = 2)
NIh <- sizes$NIh
nIh <- sizes$nIh
resI <- S.STpiPS(Stratum, Households, nIh)
head(resI)
samI <- resI[, 1]
piI <- resI[, 2]
UI <- levels(as.factor(FrameI$PSU))
sampleI <- data.frame(PSU = UI[samI], dI = 1/piI)
FrameII <- left_join(sampleI,
BigCity[which(BigCity$PSU %in% sampleI[,1]), ])
attach(FrameII)
HHdb <- FrameII %>%
group_by(PSU) %>%
summarise(Ni = length(unique(HHID)))
Ni <- as.numeric(HHdb$Ni)
ni <- 5
sam = S.SI(Ni[1], ni)
clusterII = FrameII[which(FrameII$PSU == sampleI$PSU[1]), ]
sam.HH <- data.frame(HHID = unique(clusterII$HHID)[sam])
clusterHH <- left_join(sam.HH, clusterII, by = "HHID")
clusterHH$dki <- Ni[1]/ni
clusterHH$dk <- clusterHH$dI * clusterHH$dki
data = clusterHH
for (i in 2:length(Ni)) {
sam = S.SI(Ni[i], ni)
clusterII = FrameII[which(FrameII$PSU == sampleI$PSU[i]), ]
sam.HH <- data.frame(HHID = unique(clusterII$HHID)[sam])
clusterHH <- left_join(sam.HH, clusterII, by = "HHID")
clusterHH$dki <- Ni[i]/ni
clusterHH$dk <- clusterHH$dI * clusterHH$dki
data1 = clusterHH
data = rbind(data, data1)
}
sum(data$dk)
attach(data)
estima <- data.frame(Income, Expenditure)
area <- as.factor(PSU)
stratum <- as.factor(Stratum)
E.UC(stratum, area, dk, estima)
# }
Run the code above in your browser using DataLab