Learn R Programming

TempStable (version 0.1.0)

charCTS: Characteristic function of the classical tempered stable (CTS) distribution

Description

Theoretical characteristic function (CF) of the classical tempered stable distribution. See Kuechler & Tappe (2013) for details.

Usage

charCTS(
  t,
  alpha = NULL,
  deltap = NULL,
  deltam = NULL,
  lambdap = NULL,
  lambdam = NULL,
  mu = NULL,
  theta = NULL
)

Value

The CF of the tempered stable subordinator distribution.

Arguments

t

A vector of real numbers where the CF is evaluated.

alpha

Stability parameter. A real number between 0 and 2.

deltap

Scale parameter for the right tail. A real number > 0.

deltam

Scale parameter for the left tail. A real number > 0.

lambdap

Tempering parameter for the right tail. A real number > 0.

lambdam

Tempering parameter for the left tail. A real number > 0.

mu

A location parameter, any real number.

theta

Parameters stacked as a vector.

Details

theta denotes the parameter vector (alpha, deltap, deltam, lambdap, lambdam, mu). Either provide the parameters individually OR provide theta. $$\varphi_{CTS}(t;\theta):= E_{\theta}\left[ \mathrm{e}^{\mathrm{i}tX}\right]= \exp\left(\mathrm{i}t\mu+\delta_+\Gamma(-\alpha) \left((\lambda_+-\mathrm{i}t)^{\alpha}-\lambda_+^{\alpha}+ \mathrm{i}t\alpha\lambda_+^{\alpha-1}\right)\right.\\$$ $$\left. +\delta_-\Gamma(-\alpha) \left((\lambda_-+\mathrm{i}t)^{\alpha}-\lambda_-^{\alpha}-\mathrm{i}t\alpha \lambda_-^{\alpha-1}\right) \right)$$

References

Massing, T. (2023), 'Parametric Estimation of Tempered Stable Laws'

Kuechler, U. & Tappe, S. (2013), 'Tempered stable distributions and processes' tools:::Rd_expr_doi("10.1016/j.spa.2013.06.012")

Examples

Run this code
x <- seq(-10,10,0.25)
y <- charCTS(x,1.5,1,1,1,1,0)

Run the code above in your browser using DataLab