The CF of the normal tempered stable distribution.
Arguments
t
A vector of real numbers where the CF is evaluated.
alpha
Stability parameter. A real number between 0 and 1.
beta
Skewness parameter. Any real number.
delta
Scale parameter. A real number > 0.
lambda
Tempering parameter. A real number > 0.
mu
A location parameter, any real number.
theta
A vector of all other arguments.
Details
theta denotes the parameter vector (alpha, beta, delta, lambda,
mu). Either provide the parameters individually OR provide theta.
$$\varphi_{NTS}(t;\theta)=E\left[\mathrm{e}^{\mathrm{i}tZ}\right]= \exp
\left(\mathrm{i}t\mu+\delta\Gamma(-\alpha)\left((\lambda-\mathrm{i}t
\beta+t^2/2)^{\alpha}-\lambda^{\alpha}\right)\right)
$$
References
Massing, T. (2022), 'Parametric Estimation of Tempered Stable Laws'
Rachev, S., Kim, Y., Bianchi, M. & Fabozzi, F. (2011), 'Financial Models with
Levy Processes and Volatility Clustering' tools:::Rd_expr_doi("10.1002/9781118268070")