dTSS: Density function of the tempered stable subordinator (TSS) distribution
Description
The probability density function (PDF) of tempered stable subordinator distribution.
It can be computed via the stable distribution (see details)
using the stabledist package.
As x is a numeric vector, the return value is also a numeric
vector of probability densities.
Arguments
x
A numeric vector of positive quantiles.
alpha
Stability parameter. A real number between 0 and 1.
delta
Scale parameter. A real number > 0.
lambda
Tempering parameter. A real number > 0.
theta
Parameters stacked as a vector.
Details
theta denotes the parameter vector (alpha, delta, lambda). Either provide the parameters
alpha, delta, lambda individually OR provide theta.
$$f_{TSS}(y;\theta)=\mathrm{e}^{-\lambda y-\lambda^{\alpha}\delta\Gamma(-\alpha)}f_{S(\alpha,\delta)}(y),$$
where $$f_{S(\alpha,\delta)}$$ is the density of the stable subordinator.
References
Massing, T. (2023), 'Parametric Estimation of Tempered Stable Laws'
Kawai, R. & Masuda, H. (2011), 'On simulation of tempered stable random
variates' tools:::Rd_expr_doi("10.1016/j.cam.2010.12.014")