The quantile function of the classic tempered stable (CTS).
qCTS(
  p,
  alpha = NULL,
  deltap = NULL,
  deltam = NULL,
  lambdap = NULL,
  lambdam = NULL,
  mu = NULL,
  theta = NULL,
  qmin = NULL,
  qmax = NULL,
  ...
)As p is a numeric vector, the return value is also a numeric
vector of quantiles.
A numeric vector of probabilities. Each probability must be a real number >0 and <1.
Stability parameter. A real number between 0 and 2.
Scale parameter for the right tail. A real number > 0.
Scale parameter for the left tail. A real number > 0.
Tempering parameter for the right tail. A real number > 0.
Tempering parameter for the left tail. A real number > 0.
A location parameter, any real number.
Parameters stacked as a vector.
Limits of the interval. Will be computed if
==NULL.
Modify pTSS() and stats::uniroot().
theta denotes the parameter vector (alpha, deltap, deltam,
lambdap, lambdam, mu). Either provide the parameters individually OR
provide theta.
The function searches for a root between qmin and qmax with
uniroot. Boundaries can either be supplied by the user or a built-in
approach using the stable distribution is used.
See also the pCTS() probability function.
# \donttest{
  qCTS(0.5,1.5,1,1,1,1,1)
# }
Run the code above in your browser using DataLab