Theoretical characteristic function (CF) of the Kim-Rachev tempered stable distribution.
charKRTS(
t,
alpha = NULL,
kp = NULL,
km = NULL,
rp = NULL,
rm = NULL,
pp = NULL,
pm = NULL,
mu = NULL,
theta = NULL
)
The CF of the the Kim-Rachev tempered stable distribution.
A vector of real numbers where the CF is evaluated.
Stability parameter. A real number between 0 and 1.
Parameter of KR-distribution. A real number >0
.
Parameter of KR-distribution. A real number >-alpha
.
A location parameter, any real number.
Parameters stacked as a vector.
The CF of the RDTS distribution is given by (Rachev et al. (2011))
$$\varphi_{KRTS}(t;\theta):=
E_{\theta}\left[\mathrm{e}^{\mathrm{i}tX}\right]=
\exp\left(\mathrm{i}t\mu-\mathrm{i}t\Gamma(1-\alpha)
\left(\frac{k_+r_+}{p_++1}-\frac{k_-r_-}{p_-+1}\right) \right.\\$$
$$\left. +k_+H(\mathrm{i}t;\alpha,r_+,p_+)+k_
-H(-\mathrm{i}t;\alpha,r_-,p_-)\right),$$
where
$$\left. H\left(x;\alpha,r,p\right)=
\frac{\Gamma(-\alpha)}{p}\left(F\left(p,-\alpha;1+p;rx\right)-1\right)\right.
$$
F
denotes the hypergeometric Function.
Rachev, Svetlozar T. & Kim, Young Shin & Bianchi, Michele L. & Fabozzi, Frank J. (2011) 'Financial models with Lévy processes and volatility clustering' tools:::Rd_expr_doi("10.1002/9781118268070")
x <- seq(-5,5,0.25)
y <- charKRTS(x,0.5,1,1,1,1,1,1,0)
Run the code above in your browser using DataLab