Theoretical characteristic function (CF) of the modified tempered stable distribution.
charMTS(
t,
alpha = NULL,
delta = NULL,
lambdap = NULL,
lambdam = NULL,
mu = NULL,
theta = NULL,
functionOrigin = "kim08"
)
The CF of the the modified tempered stable distribution.
A vector of real numbers where the CF is evaluated.
Stability parameter. A real number between 0 and 2.
Scale parameter. A real number > 0.
Tempering parameter. A real number > 0.
A location parameter, any real number.
Parameters stacked as a vector.
A string. Either "kim09", "rachev11" or "kim08". Default is "kim08".
theta
denotes the parameter vector (alpha, delta,
lambdap, lambdam, mu)
. Either provide the parameters individually OR
provide theta
. Characteristic function shown here is from Kim et al.
(2008).
$$\varphi_{MTS}(t;\theta):=
E_{\theta}\left[\mathrm{e}^{\mathrm{i}tX}\right]=
\exp\left(\mathrm{i}t\mu+G_R\left(t;\alpha,\delta,\lambda_+,\lambda_-\right)
+G_R\left(t;\alpha,\delta,\lambda_+,\lambda_-\right)\right),$$
where
$$\left. G_R\left(t;\alpha,\delta,\lambda_+,\lambda_-\right)=
\frac{\sqrt{\pi}\delta\Gamma(-\frac{\alpha}{2})}
{2^{\frac{\alpha+3}{2}}}\left((\lambda_+^{2}+t^{2})^{\frac{\alpha}{2}}
-\lambda_+^{\alpha}+(\lambda_-^{2}+t^{2})^{\frac{\alpha}{2}}
-\lambda_-^{\alpha} \right)\right.\\$$
$$\left. G_I\left(t;\alpha,\delta,\lambda_+,\lambda_-\right)=
\frac{\mathrm{i}t\delta\Gamma(\frac{1-\alpha}{2})}
{2^{\frac{\alpha+1}{2}}}
\left(\lambda_+^{\alpha-1}
F\left(1,\frac{1-\alpha}{2};\frac{3}{2};-\frac{t^2}{\lambda_+^2}\right)
\right. \right. \\$$
$$\left. \left. -\lambda_-^{\alpha-1}
F\left(1,\frac{1-\alpha}{2};\frac{3}{2};-\frac{t^2}{\lambda_-^2}\right)
\right)\right.$$
F
is the hypergeometric function.
Origin of functions
Since the parameterisation can be different for this
characteristic function in different approaches, the respective approach can
be selected with functionOrigin
. For the estimation function
TemperedEstim
and therefore also the Monte Carlo function
TemperedEstim_Simulation
and the calculation of the density function
dMTS
only the approach of Kim et al. (2008) or Rachev et al.
(2011) can be selected. If you want to use the approach of Kim et al. (2009)
for these functions, you have to clone the package from GitHub and adapt the
functions accordingly.
From Kim et al. (2009) 'The modified tempered stable
distribution, GARCH-models and option pricing'. Here alpha
is in
(-Inf,1) except 0.5
.
From Kim et al. (2008) 'Financial market models with Levy processes and time-varying volatility'. Without further coding, this is the selected function for estimation function from this package.
From Rachev et al. (2011) 'Financial Models with Levy
Processes and time-varying volatility'. Similar to kim08
Kim, Y. S.; Rachev, S. T.; Bianchi, M. L. & Fabozzi, F. J. (2008), 'Financial market models with lévy processes and time-varying volatility' tools:::Rd_expr_doi("10.1016/j.jbankfin.2007.11.004")
Kim, Y. S.; Rachev, S. T.; Bianchi, M. L. & Fabozzi, F. J. (2009), 'A New Tempered Stable Distribution and Its Application to Finance' tools:::Rd_expr_doi("10.1007/978-3-7908-2050-8_5")
Rachev, S. T.; Kim, Y. S.; Bianchi, M. L. & Fabozzi, F. J. (2011), 'Financial models with Lévy processes and volatility clustering' tools:::Rd_expr_doi("10.1002/9781118268070")
x <- seq(-5,5,0.1)
y <- charMTS(x, 0.5,1,1,1,0)
Run the code above in your browser using DataLab