The cumulative probability distribution function (CDF) of the generalized classical tempered stable distribution.
pGTS(
q,
alphap = NULL,
alpham = NULL,
deltap = NULL,
deltam = NULL,
lambdap = NULL,
lambdam = NULL,
mu = NULL,
theta = NULL,
dens_method = "FFT",
a = -40,
b = 40,
nf = 2048,
...
)
As q
is a numeric vector, the return value is also a numeric
vector of probabilities.
A numeric vector of quantiles.
Stability parameter. A real number between 0 and 2.
Scale parameter for the right tail. A real number > 0.
Scale parameter for the left tail. A real number > 0.
Tempering parameter for the right tail. A real number > 0.
Tempering parameter for the left tail. A real number > 0.
A location parameter, any real number.
Parameters stacked as a vector.
A method to get the density function. Here, only "FFT" is available.
Starting point of FFT, if dens_method == "FFT"
. -20
by default.
Ending point of FFT, if dens_method == "FFT"
. 20
by default.
Pieces the transformation is divided in. Limited to power-of-two size.
Possibility to modify stats::integrate()
.
theta
denotes the parameter vector (alphap, alpham, deltap,
deltam, lambdap, lambdam, mu)
. Either provide the parameters individually OR
provide theta
.
The function integrates the PDF numerically with integrate()
.
See also the dGTS()
density-function.
# \donttest{
x <- seq(-1,1,1)
y <- pGTS(x,0.5,1.5,1,1,1,1,1)
# }
Run the code above in your browser using DataLab