The cumulative probability distribution function (CDF) of the generalized classical tempered stable distribution.
pGTS(
q,
alphap = NULL,
alpham = NULL,
deltap = NULL,
deltam = NULL,
lambdap = NULL,
lambdam = NULL,
mu = NULL,
theta = NULL,
dens_method = "FFT",
a = -40,
b = 40,
nf = 2048,
...
)As q is a numeric vector, the return value is also a numeric
vector of probabilities.
A numeric vector of quantiles.
Stability parameter. A real number between 0 and 2.
Scale parameter for the right tail. A real number > 0.
Scale parameter for the left tail. A real number > 0.
Tempering parameter for the right tail. A real number > 0.
Tempering parameter for the left tail. A real number > 0.
A location parameter, any real number.
Parameters stacked as a vector.
A method to get the density function. Here, only "FFT" is available.
Starting point of FFT, if dens_method == "FFT". -20
by default.
Ending point of FFT, if dens_method == "FFT". 20
by default.
Pieces the transformation is divided in. Limited to power-of-two size.
Possibility to modify stats::integrate().
theta denotes the parameter vector (alphap, alpham, deltap,
deltam, lambdap, lambdam, mu). Either provide the parameters individually OR
provide theta.
The function integrates the PDF numerically with integrate().
See also the dGTS() density-function.
# \donttest{
x <- seq(-1,1,1)
y <- pGTS(x,0.5,1.5,1,1,1,1,1)
# }
Run the code above in your browser using DataLab