Learn R Programming

Temporal (version 0.3.0.1)

FitGamma: Gamma Distribution Parameter Estimation

Description

Estimates parameters for gamma event times subject to non-informative right censoring. The gamma distribution is parameterized in terms of the shape \(\alpha\) and rate \(\lambda\): $$f(t) = \frac{\lambda}{\Gamma(\alpha)}(\lambda t)^{\alpha-1}e^{-\lambda t}, t>0$$

Usage

FitGamma(
  data,
  eps = 1e-06,
  init = list(),
  maxit = 10,
  report = FALSE,
  sig = 0.05,
  status_name = "status",
  tau = NULL,
  time_name = "time"
)

Value

An object of class fit containing the following:

Parameters

The estimated shape \(\alpha\) and rate \(\lambda\).

Information

The observed information matrix.

Outcome

The fitted mean, median, and variance.

RMST

The estimated RMSTs, if tau was specified.

Arguments

data

Data.frame.

eps

Tolerance for Newton-Raphson iterations.

init

List with initial values for the `shape` \(\alpha\) and `rate` \(\lambda\).

maxit

Maximum number of NR iterations.

report

Report fitting progress?

sig

Significance level, for CIs.

status_name

Name of the status indicator, 1 if observed, 0 if censored.

tau

Optional truncation times for calculating RMSTs.

time_name

Name of column containing the time to event.

Examples

Run this code
# Generate Gamma data with 20% censoring.
data <- GenData(n = 1e3, dist = "gamma", theta = c(2, 2), p = 0.2)

# Estimate parameters.
fit <- FitParaSurv(data, dist = "gamma")

Run the code above in your browser using DataLab