Low-rank tensor regression with stochastic updates
tensor.reg(
z.train,
x.train,
y.train,
nsweep = 50,
rank = 2,
scale = TRUE,
alpha.lasso = 1
)A list with beta.store, gam.store, rank, p, d, and scaling info
Matrix of scalar covariates (n x pgamma)
3D array of tensor predictors (n x p x d)
Response vector (length n)
Number of stochastic update iterations (default 50)
Rank of tensor decomposition (default 2)
whether to scale predictors and response (default TRUE)
LASSO tuning parameter for initial estimate (default 1)