tEIG: Tensor Eigenvalue Decomposition Using any Discrete Transform
Description
The Eigenvalue decomposition of a tensor T (\(n\) x \(n\) x \(k\)) decomposes the tensor into
a tensor of eigenvectors (P) and a diagonal tensor of eigenvalues (D) so that
T = P D inv(P).
Usage
tEIG(tnsr, tform)
Value
P, a tensor of Eigenvectors (\(n\) x \(n\) x \(k\))
D, a diagonal tensor of Eigenvalues (\(n\) x \(n\) x \(k\))
Arguments
tnsr,
a 3-mode S3 tensor class object (\(n\) x \(n\) x \(k\))
tform,
Any discrete transform.
fft: Fast Fourier Transorm
dwt: Discrete Wavelet Transform (Haar Wavelet)
dct: Discrete Cosine transform
dst: Discrete Sine transform
dht: Discrete Hadley transform
dwht: Discrete Walsh-Hadamard transform
Author
Kyle Caudle
Randy Hoover
Jackson Cates
Everett Sandbo
References
K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.