Learn R Programming

⚠️There's a newer version (1.7.0) of this package.Take me there.

TestDesign (version 0.2.5)

Optimal Test Design Approach to Fixed and Adaptive Test Construction

Description

Use the optimal test design approach by Birnbaum (1968, ISBN:9781593119348) and van der Linden (2018) in constructing fixed and adaptive tests. Supports the following mixed-integer programming (MIP) solver packages: 'Rsymphony', 'gurobi', 'lpSolve', and 'Rglpk'. The 'gurobi' package is not available from CRAN; see . See vignette for installing 'Rsymphony' package on Mac systems.

Copy Link

Version

Install

install.packages('TestDesign')

Monthly Downloads

470

Version

0.2.5

License

GPL (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Seung W. Choi

Last Published

September 12th, 2019

Functions in TestDesign (0.2.5)

calcLocation

Calculate item location
calcDerivative

Calculate first derivative
array_info_pc

Calculate Fisher information at multiple thetas (PC)
calc_info

Calculate the Fisher information matrix for a single theta value and a set of items, potentially with a mixture of different models
config_ATA-class

createStaticTestConfig
calc_info_EB

Calculate the Fisher information using empirical Bayes
Shadow

Run computerized adaptive testing with generalized shadow-test approach
array_p_1pl

Calculate probability at multiple thetas (1PL)
calcDerivative2

Calculate second derivative
array_p_gpc

Calculate probability at multiple thetas (GPC)
array_p_pc

Calculate probability at multiple thetas (PC)
array_info_gpc

Calculate Fisher information at multiple thetas (GPC)
buildConstraints

Build constraints
calc_log_likelihood

Calculate a log-likelihood value of theta
calc_log_likelihood_function

Calculate a log-likelihood function of theta
info_gr

Calculate Fisher information at a single theta (GR).
info_pc

Calculate Fisher information at a single theta (PC)
dataset_fatigue

Fatigue dataset
array_p_3pl

Calculate probability at multiple thetas (3PL)
plotExposureRateBySegment

Draw exposure rate plots by theta segment
array_p_2pl

Calculate probability at multiple thetas (2PL)
array_p_gr

Calculate probability at multiple thetas (GR)
eap

Generate expected a posteriori estimates of theta
info_3pl

Calculate Fisher information at a single theta (3PL)
EAP

Generate expected a posteriori estimates of theta
info_gpc

Calculate Fisher information at a single theta (GPC).
item_GPC-class

An S4 class to represent a generalized partial credit item
item_GR-class

An S4 class to represent a graded response item
MLE

Generate maximum likelihood estimates of theta
mle

Generate maximum likelihood estimates of theta
calcEscore

Calculate expected scores
calcFisher

Calculate Fisher information
calcHessian

Calculate second derivative of log-likelihood
plotExposure

Draw an item exposure plot
plotEligibilityStats

Draw item eligibility statistics plots
calc_posterior

Calculate a posterior value of theta
calc_posterior_function

Calculate a posterior distribution of theta
calc_likelihood

Calculate a likelihood value of theta
item_pool.operators

Item pool and pool cluster operators
calc_posterior_single

Calculate a posterior value of theta for a single item
loadItemPool

Load item paramaters
lnHyperPars

Calculate hyperparameters for log-normal distribution
loadStAttrib

Load set/stimulus/passage attributes
calc_likelihood_function

Calculate a likelihood function of theta
checkConstraints

Check the consistency of constraints and item usage
calcProb

Calculate item response probabilities
p_gpc

Calculate probability at a single theta (GPC)
plotRMSE

Draw RMSE plots
calcJacobian

Calculate first derivative of log-likelihood
array_info_gr

Calculate Fisher information at multiple thetas (GR)
p_gr

Calculate probability at a single theta (GR)
theta_EB

Calculate an empirical Bayes estimate of theta for one examinee
theta_EAP_matrix

Calculate EAP estimates of theta for a group of examinees
calc_MI_FB

Calculate the mutual information using full Bayesian
calcRP

Find matching theta to supplied probability
info_1pl

Calculate Fisher information at a single theta (1PL)
dataset_reading

Reading dataset
plotShadow

Draw a shadow test chart
calc_info_matrix

Calculate the Fisher information matrix for a vector of theta values and a set of items, potentially with a mixture of different models
calc_info_FB

Calculate the Fisher information using full Bayesian
info_2pl

Calculate Fisher information at a single theta (2PL)
item_PC-class

An S4 class to represent a partial credit item
item_pool-class

An S4 class to represent an item pool
makeItemPoolCluster

Create an item pool cluster object
plotExposureRateFinalFlag

Draw item information plots for flagged items by segment
logitHyperPars

Calculate hyperparameters for logit-normal distribution
constraint-class

An S4 class to represent a set of constraints
dataset_science

Science dataset
plotExposureRateFinal

Draw exposure rate plots by final theta segment
config_Shadow-class

createShadowTestConfig
theta_EB_single

Calculate an empirical Bayes estimate of theta for a single item
plotInfo

Draw item information plots
subsetItemPool

Create a subset of an item pool object
simResp

Simulate item responses
item_1PL-class

An S4 class to represent a 1PL item
iparPosteriorSample

Sample item parameter estimates from their posterior distributions
item_2PL-class

An S4 class to represent a 2PL item
item_3PL-class

An S4 class to represent a 3PL item
theta_FB_single

Calculate a fully Bayesian estimate of theta for a single item
extract-methods

Extract
output_Shadow-class

output_Shadow
find_segment

Find the segment to which each theta value belongs
theta_FB

Calculate a fully Bayesian estimate of theta for an examinee
plotCAT

Draw an audit trail plot
p_1pl

Calculate probability at a single theta (1PL)
p_pc

Calculate probability at a single theta (PC)
loadConstraints

Load constraints
updateConstraints

Update constraints
loadItemAttrib

Load item attributes
pool_cluster-class

An S4 class to represent a cluster of item pools
subsetTest

Create a subset of a test object
test-class

An S4 class to represent a test
saveOutput

Save or print audit trails
makeTest

Generate a test object
makeTestCluster

Generate a test cluster object
p_2pl

Calculate probability at a single theta (2PL)
theta_EAP

Calculate an EAP estimate of theta for one examinee
plotMaxInfo

Draw a plot of maximum attainable information given the imposed constraints
plotInfoOverlay

Overlay item information plots
test_cluster-class

An S4 class to represent a test cluster
p_3pl

Calculate probability at a single theta (3PL)
OAT

Launch Shiny app
array_info_1pl

Calculate Fisher information at multiple thetas (1PL)
RMSE

Calculate Root Mean Squared Error
array_info_3pl

Calculate Fisher information at multiple thetas (3PL)
array_info_2pl

Calculate Fisher information at multiple thetas (2PL)
addTrans

Add transparancy to color
STA

Perform shadow test assembly
ATA

Run Automated Test Assembly
RE

Calculate Relative Errors