An S4 generic and its methods to calculate the second derivative of the probability function.
calcDerivative2(object, theta)# S4 method for item_1PL,numeric
calcDerivative2(object, theta)
# S4 method for item_2PL,numeric
calcDerivative2(object, theta)
# S4 method for item_3PL,numeric
calcDerivative2(object, theta)
# S4 method for item_PC,numeric
calcDerivative2(object, theta)
# S4 method for item_GPC,numeric
calcDerivative2(object, theta)
# S4 method for item_GR,numeric
calcDerivative2(object, theta)
# S4 method for item_pool,numeric
calcDerivative2(object, theta)
# S4 method for pool_cluster,numeric
calcDerivative2(object, theta)
An instance of an item class.
A vector of theta values.
Second derivative values.
rasch_probabilistic_1960TestDesign
lord_theory_1952TestDesign
birnbaum_efficient_1957TestDesign
birnbaum_estimation_1958TestDesign
birnbaum_further_1958TestDesign
birnbaum_latent_1968TestDesign
masters_rasch_1982TestDesign
andrich_rating_1978TestDesign
muraki_generalized_1992TestDesign
samejima_estimation_1969TestDesign
# NOT RUN {
item_1 <- new("item_1PL", difficulty = 0.5)
dd_item_1 <- calcDerivative2(item_1, seq(-3, 3, 1))
item_2 <- new("item_2PL", slope = 1.0, difficulty = 0.5)
dd_item_2 <- calcDerivative2(item_2, seq(-3, 3, 1))
item_3 <- new("item_3PL", slope = 1.0, difficulty = 0.5, guessing = 0.2)
dd_item_3 <- calcDerivative2(item_3, seq(-3, 3, 1))
item_4 <- new("item_PC", threshold = c(-1, 0, 1), ncat = 4)
dd_item_4 <- calcDerivative2(item_4, seq(-3, 3, 1))
item_5 <- new("item_GPC", slope = 1.2, threshold = c(-0.8, -1.0, 0.5), ncat = 4)
dd_item_5 <- calcDerivative2(item_5, seq(-3, 3, 1))
item_6 <- new("item_GR", slope = 0.9, category = c(-1, 0, 1), ncat = 4)
dd_item_6 <- calcDerivative2(item_6, seq(-3, 3, 1))
dd_itempool <- calcDerivative2(itempool_science, seq(-3, 3, 1))
# }
Run the code above in your browser using DataLab