mlef
is a function to compute maximum likelihood estimates of theta using fence items.
mlef(
object,
select = NULL,
resp,
fence_slope = 5,
fence_difficulty = c(-5, 5),
start_theta = NULL,
max_iter = 100,
crit = 0.001,
truncate = FALSE,
theta_range = c(-4, 4),
max_change = 1,
do_Fisher = TRUE
)# S4 method for item_pool
mlef(
object,
select = NULL,
resp,
fence_slope = 5,
fence_difficulty = c(-5, 5),
start_theta = NULL,
max_iter = 50,
crit = 0.005,
truncate = FALSE,
theta_range = c(-4, 4),
max_change = 1,
do_Fisher = TRUE
)
(optional) if item indices are supplied, only the specified items are used.
item response on all (or selected) items in the object
argument. Can be a vector, a matrix, or a data frame. length(resp)
or ncol(resp)
must be equal to the number of all (or selected) items.
the slope parameter to use on fence items. Can be one value, or two values for the lower and the upper fence respectively. (default = 5
)
the difficulty parameter to use on fence items. Must have two values for the lower and the upper fence respectively. (default = c(-5, 5)
)
(optional) initial theta values. If not supplied, EAP estimates using uniform priors are used as initial values. Uniform priors are computed using the theta_range
argument below, with increments of .1
.
maximum number of iterations. (default = 100
)
convergence criterion to use. (default = 0.001
)
set TRUE
to impose a bound on the estimate. (default = FALSE
)
a range of theta values to bound the estimate. Only effective when truncate
is TRUE
. (default = c(-4, 4)
)
upper bound to impose on the absolute change in theta between iterations. Absolute changes exceeding this value will be capped to max_change
. (default = 1.0
)
set TRUE
to use Fisher scoring instead of Newton-Raphson method. (default = TRUE
)
mlef
returns a list containing estimated values.
th
theta value.
se
standard error.
conv
TRUE
if estimation converged.
trunc
TRUE
if truncation was applied on th
.
Han, K. T. (2016). Maximum likelihood score estimation method with fences for short-length tests and computerized adaptive tests. Applied Psychological Measurement, 40(4), 289-301.
# NOT RUN {
mlef(itempool_fatigue, resp = resp_fatigue_data[10, ])
mlef(itempool_fatigue, select = 1:20, resp = resp_fatigue_data[10, 1:20])
# }
Run the code above in your browser using DataLab