Learn R Programming

⚠️There's a newer version (1.7.0) of this package.Take me there.

TestDesign (version 1.6.1)

Optimal Test Design Approach to Fixed and Adaptive Test Construction

Description

Uses the optimal test design approach by Birnbaum (1968, ISBN:9781593119348) and van der Linden (2018) to construct fixed, adaptive, and parallel tests. Supports the following mixed-integer programming (MIP) solver packages: 'Rsymphony', 'gurobi', 'lpSolve', and 'Rglpk'. The 'gurobi' package is not available from CRAN; see .

Copy Link

Version

Install

install.packages('TestDesign')

Monthly Downloads

470

Version

1.6.1

License

GPL (>= 2)

Maintainer

Seung W. Choi

Last Published

March 31st, 2024

Functions in TestDesign (1.6.1)

calc_info_FB

Calculate the Fisher information using full Bayesian
calcEscore

Calculate expected scores
calcHessian

Calculate second derivative of log-likelihood
calcFisher

Calculate Fisher information
calc_likelihood

(C++) For multiple items, calculate likelihoods
checkConstraints

Check the consistency of constraints and item usage
calcJacobian

Calculate first derivative of log-likelihood
calcLocation-methods

Calculate central location (overall difficulty)
RE

Calculate Relative Errors
calc_posterior

Calculate a posterior value of theta
calc_posterior_function

Calculate a posterior distribution of theta
constraint-class

Class 'constraint': a single constraint
eap

Compute expected a posteriori estimates of theta
Shadow

Run adaptive test assembly
find_segment

(C++) Classify theta values into segments using cutpoints
RMSE

Calculate Root Mean Squared Error
detectBestSolver

Detect best solver
app

Open TestDesign app
a_to_alpha

Calculate alpha angles from a-parameters
config_Static-class

Create a config_Static object
config_Shadow-class

Create a config_Shadow object
calc_MI_FB

Calculate the mutual information using full Bayesian
e_item

(C++) Calculate expected scores
dataset_reading

Reading dataset
makeItemPoolCluster

Create an item pool cluster object
calc_posterior_single

Calculate a posterior value of theta for a single item
calc_info

(C++) For multiple items, calculate Fisher information
j_item

(C++) Calculate first derivative of log-likelihood
item_pool_cluster-class

Class 'item_pool_cluster': an item pool
output_Static-class

Class 'output_Static': fixed-form assembly solution
item_pool-operators

Basic operators for item pool objects
lnHyperPars

Convert mean and standard deviation into log-normal distribution parameters
getSolution

Print solution items
Split

Split an item pool into partitions
getSolutionAttributes

Retrieve constraints-related attributes from solution
calcLogLikelihood

Calculate log-likelihood
calcProb-methods

Calculate item response probabilities
item_attrib-operators

Basic functions for item attribute objects
item_pool-class

Class 'item_pool': an item pool
dataset_science

Science dataset
constraints-class

Class 'constraints': a set of constraints
st_attrib-class

Load set/stimulus/passage attributes
logitHyperPars

Convert mean and standard deviation into logit-normal distribution parameters
p_item

(C++) Calculate item response probability
constraints-operators

Basic operators for constraints objects
mlef

Compute maximum likelihood estimates of theta using fence items
makeSimulationDataCache

Create a simulation data cache object
testSolver

Test solver
loadConstraints

Load constraints
info_item

(C++) Calculate Fisher information
item_attrib-class

Load item attributes
h_item

(C++) Calculate second derivative of log-likelihood
loadItemPool

Load item pool
dataset_bayes

Bayes dataset
runAssembly

Run Test Assembly
show

Extension of show() for objects in TestDesign package
output_Shadow-class

Class 'output_Shadow': adaptive assembly solution for one simulee
test_cluster-class

Class 'test_cluster': data cache for simulations
makeTest

Create a test object
summary

Extension of summary() for objects in TestDesign package
test-class

Class 'test': data cache for simulations
theta_EB

(C++) Calculate a theta estimate using EB (Empirical Bayes) method
theta_FB

(C++) Calculate a theta estimate using FB (Full Bayes) method
plot

Extension of plot() for objects in TestDesign package
print

Extension of print() for objects in TestDesign package
dataset_fatigue

Fatigue dataset
simResp

Simulate item response data
item-classes

Item classes
iparPosteriorSample

Generate item parameter samples using standard errors
makeTestCluster

Create a test cluster object
output_Shadow_all-class

Class 'output_Shadow_all': a set of adaptive assembly solutions
mle

Compute maximum likelihood estimates of theta
test_operators

Basic operators for test objects
output_Split-class

Class 'output_Split': partitioning solution
summary-classes

Summary classes
st_attrib-operators

Basic functions for stimulus attribute objects
simulation_data_cache-class

Class 'simulation_data_cache': data cache for Shadow()
theta_EAP

(C++) Calculate a theta estimate using EAP (expected a posteriori) method
toggleConstraints

Toggle constraints
Static

Run fixed-form test assembly
TestDesign

Open TestDesign app
buildConstraints

Build constraints (shortcut to other loading functions)
calc_info_EB

Calculate the Fisher information using empirical Bayes