## The function is currently defined as
function (Ts=30, Ta=25, Tg=NULL, RH=0.5, E=0.96, rho=0.1, cloud=0, SE=0, V=1,
L=0.1, c=NULL, n=NULL, a=NULL, b=NULL, m=NULL, type="forced", shape="hcylinder")
{
Te <- Ta + (qabs(Ta=Ta, Tg=Tg, RH=RH, E=E, rho=rho, cloud=cloud,
SE=SE) - StephBoltz()*0.96*(Ta+273.15)^4) /
(hconv(Ts=Ts, Ta=Ta, V=V, L=L, c = NULL, n = NULL, a = NULL, b = NULL, m = NULL,
type=type, shape=shape) + 4*StephBoltz()*0.96*(Ta+273.15)^3)
Te
}
# Example
Ts<-40
Ta<-30
SE<-seq(0,1500,100)
Toperative<-NULL
for(rho in seq(0, 1, 0.1)){
temp<-Te(Ts=Ts, Ta=Ta, Tg=NULL, RH=0.5, E=0.96, rho=rho, cloud=1, SE=SE, V=0.1,
L=0.1, type="free", shape="hcylinder")
Toperative<-cbind(Toperative, temp)
}
Toperative<-data.frame(SE=seq(0,1500,100), Toperative)
colnames(Toperative)<-c("SE", seq(0,1,0.1))
matplot(Toperative$SE, Toperative[,-1], ylim=c(30, 50), type="l", xlim=c(0,1000),
ylab="Operative Temperature (C)", xlab="Solar Radiation (W/m2)", lty=1,
col=flirpal[rev(seq(1,380,35))])Run the code above in your browser using DataLab