This function will generate n random points from an Inverse Gaussian
distribution with a user provided, .mean, .shape, .dispersionThe function
returns a tibble with the simulation number column the x column which corresponds
to the n randomly generated points.
The data is returned un-grouped.
The columns that are output are:
sim_number The current simulation number.
x The current value of n for the current simulation.
y The randomly generated data point.
dx The x value from the stats::density() function.
dy The y value from the stats::density() function.
p The values from the resulting p_ function of the distribution family.
q The values from the resulting q_ function of the distribution family.
tidy_inverse_normal(
.n = 50,
.mean = 1,
.shape = 1,
.dispersion = 1/.shape,
.num_sims = 1,
.return_tibble = TRUE
)A tibble of randomly generated data.
The number of randomly generated points you want.
Must be strictly positive.
Must be strictly positive.
An alternative way to specify the .shape.
The number of randomly generated simulations you want.
A logical value indicating whether to return the result as a tibble. Default is TRUE.
Steven P. Sanderson II, MPH
This function uses the underlying actuar::rinvgauss(). For
more information please see rinvgauss()
Other Continuous Distribution:
tidy_beta(),
tidy_burr(),
tidy_cauchy(),
tidy_chisquare(),
tidy_exponential(),
tidy_f(),
tidy_gamma(),
tidy_generalized_beta(),
tidy_generalized_pareto(),
tidy_geometric(),
tidy_inverse_burr(),
tidy_inverse_exponential(),
tidy_inverse_gamma(),
tidy_inverse_pareto(),
tidy_inverse_weibull(),
tidy_logistic(),
tidy_lognormal(),
tidy_normal(),
tidy_paralogistic(),
tidy_pareto(),
tidy_pareto1(),
tidy_t(),
tidy_triangular(),
tidy_uniform(),
tidy_weibull(),
tidy_zero_truncated_geometric()
Other Gaussian:
tidy_normal(),
util_normal_param_estimate(),
util_normal_stats_tbl()
Other Inverse Distribution:
tidy_inverse_burr(),
tidy_inverse_exponential(),
tidy_inverse_gamma(),
tidy_inverse_pareto(),
tidy_inverse_weibull()