This function performs Markov Chain Monte Carlo (MCMC) sampling on the input data and returns tidy data and a plot representing the results.
tidy_mcmc_sampling(.x, .fns = "mean", .cum_fns = "cmean", .num_sims = 2000)
A list containing tidy data and a plot.
The data vector for MCMC sampling.
The function(s) to apply to each MCMC sample. Default is "mean".
The function(s) to apply to the cumulative MCMC samples. Default is "cmean".
The number of simulations. Default is 2000.
Steven P. Sanderson II, MPH
Perform MCMC sampling and return tidy data and a plot.
The function takes a data vector as input and performs MCMC sampling with the specified number of simulations. It applies user-defined functions to each MCMC sample and to the cumulative MCMC samples. The resulting data is formatted in a tidy format, suitable for further analysis. Additionally, a plot is generated to visualize the MCMC samples and cumulative statistics.
Other Utility:
check_duplicate_rows()
,
convert_to_ts()
,
quantile_normalize()
,
util_beta_aic()
,
util_binomial_aic()
,
util_cauchy_aic()
,
util_chisq_aic()
,
util_exponential_aic()
,
util_f_aic()
,
util_gamma_aic()
,
util_generalized_beta_aic()
,
util_generalized_pareto_aic()
,
util_geometric_aic()
,
util_hypergeometric_aic()
,
util_inverse_burr_aic()
,
util_inverse_pareto_aic()
,
util_inverse_weibull_aic()
,
util_logistic_aic()
,
util_lognormal_aic()
,
util_negative_binomial_aic()
,
util_normal_aic()
,
util_paralogistic_aic()
,
util_pareto1_aic()
,
util_pareto_aic()
,
util_poisson_aic()
,
util_t_aic()
,
util_triangular_aic()
,
util_uniform_aic()
,
util_weibull_aic()
,
util_zero_truncated_binomial_aic()
,
util_zero_truncated_geometric_aic()
,
util_zero_truncated_negative_binomial_aic()
,
util_zero_truncated_poisson_aic()
# Generate MCMC samples
set.seed(123)
data <- rnorm(100)
result <- tidy_mcmc_sampling(data, "median", "cmedian", 500)
result
Run the code above in your browser using DataLab