This function estimates the parameters m, n, and k of a hypergeometric distribution from the provided data and then calculates the AIC value based on the fitted distribution.
util_hypergeometric_aic(.x)
The AIC value calculated based on the fitted hypergeometric distribution to the provided data.
A numeric vector containing the data to be fitted to a hypergeometric distribution.
Steven P. Sanderson II, MPH
This function calculates the Akaike Information Criterion (AIC) for a hypergeometric distribution fitted to the provided data.
This function fits a hypergeometric distribution to the provided data. It estimates the parameters m, n, and k of the hypergeometric distribution from the data. Then, it calculates the AIC value based on the fitted distribution.
Initial parameter estimates: The function does not estimate parameters; they are directly calculated from the data.
Optimization method: Since the parameters are directly calculated from the data, no optimization is needed.
Goodness-of-fit: While AIC is a useful metric for model comparison, it's recommended to also assess the goodness-of-fit of the chosen model using visualization and other statistical tests.
Other Utility:
check_duplicate_rows()
,
convert_to_ts()
,
quantile_normalize()
,
tidy_mcmc_sampling()
,
util_beta_aic()
,
util_binomial_aic()
,
util_cauchy_aic()
,
util_chisq_aic()
,
util_exponential_aic()
,
util_f_aic()
,
util_gamma_aic()
,
util_generalized_beta_aic()
,
util_generalized_pareto_aic()
,
util_geometric_aic()
,
util_inverse_burr_aic()
,
util_inverse_pareto_aic()
,
util_inverse_weibull_aic()
,
util_logistic_aic()
,
util_lognormal_aic()
,
util_negative_binomial_aic()
,
util_normal_aic()
,
util_paralogistic_aic()
,
util_pareto1_aic()
,
util_pareto_aic()
,
util_poisson_aic()
,
util_t_aic()
,
util_triangular_aic()
,
util_uniform_aic()
,
util_weibull_aic()
,
util_zero_truncated_binomial_aic()
,
util_zero_truncated_geometric_aic()
,
util_zero_truncated_negative_binomial_aic()
,
util_zero_truncated_poisson_aic()
# Example 1: Calculate AIC for a sample dataset
set.seed(123)
x <- rhyper(100, m = 10, n = 10, k = 5)
util_hypergeometric_aic(x)
Run the code above in your browser using DataLab