Learn R Programming

TidyDensity (version 1.5.0)

util_negative_binomial_aic: Calculate Akaike Information Criterion (AIC) for Negative Binomial Distribution

Description

This function estimates the parameters size (r) and probability (prob) of a negative binomial distribution from the provided data and then calculates the AIC value based on the fitted distribution.

Usage

util_negative_binomial_aic(.x)

Value

The AIC value calculated based on the fitted negative binomial distribution to the provided data.

Arguments

.x

A numeric vector containing the data to be fitted to a negative binomial distribution.

Author

Steven P. Sanderson II, MPH

Details

This function calculates the Akaike Information Criterion (AIC) for a negative binomial distribution fitted to the provided data.

This function fits a negative binomial distribution to the provided data. It estimates the parameters size (r) and probability (prob) of the negative binomial distribution from the data. Then, it calculates the AIC value based on the fitted distribution.

Initial parameter estimates: The function uses the method of moments estimate as a starting point for the size (r) parameter of the negative binomial distribution, and the probability (prob) is estimated based on the mean and variance of the data.

Optimization method: Since the parameters are directly calculated from the data, no optimization is needed.

Goodness-of-fit: While AIC is a useful metric for model comparison, it's recommended to also assess the goodness-of-fit of the chosen model using visualization and other statistical tests.

See Also

Other Utility: check_duplicate_rows(), convert_to_ts(), quantile_normalize(), tidy_mcmc_sampling(), util_beta_aic(), util_binomial_aic(), util_cauchy_aic(), util_chisq_aic(), util_exponential_aic(), util_f_aic(), util_gamma_aic(), util_generalized_beta_aic(), util_generalized_pareto_aic(), util_geometric_aic(), util_hypergeometric_aic(), util_inverse_burr_aic(), util_inverse_pareto_aic(), util_inverse_weibull_aic(), util_logistic_aic(), util_lognormal_aic(), util_normal_aic(), util_paralogistic_aic(), util_pareto1_aic(), util_pareto_aic(), util_poisson_aic(), util_t_aic(), util_triangular_aic(), util_uniform_aic(), util_weibull_aic(), util_zero_truncated_binomial_aic(), util_zero_truncated_geometric_aic(), util_zero_truncated_negative_binomial_aic(), util_zero_truncated_poisson_aic()

Examples

Run this code
# Example 1: Calculate AIC for a sample dataset
set.seed(123)
data <- rnbinom(n = 100, size = 5, mu = 10)
util_negative_binomial_aic(data)

Run the code above in your browser using DataLab