Learn R Programming

TrenchR (version 1.1.1)

Tb_lizard: Operative Environmental Temperature of a Lizard

Description

The function estimates body temperature (C, operative environmental temperature) of a lizard based on Campbell1998;textualTrenchR. The function was designed for Sceloporus lizards and described in Buckley2008;textualTrenchR.

Usage

Tb_lizard(
  T_a,
  T_g,
  u,
  svl,
  m,
  psi,
  rho_s,
  elev,
  doy,
  sun = TRUE,
  surface = TRUE,
  a_s = 0.9,
  a_l = 0.965,
  epsilon_s = 0.965,
  F_d = 0.8,
  F_r = 0.5,
  F_a = 0.5,
  F_g = 0.5
)

Value

T_e numeric predicted body (operative environmental) temperature (C).

Arguments

T_a

numeric air temperature (C).

T_g

numeric surface temperature (C).

u

numeric wind speed (m s-1).

svl

numeric lizard snout vent length (mm).

m

numeric lizard mass (g); note that it can be estimated as in mass_from_length: 3.55 x 10-5 x length3

psi

numeric solar zenith angle (degrees).

rho_s

numeric surface albedo (proportion). ~ 0.25 for grass, ~ 0.1 for dark soil, > 0.75 for fresh snow Campbell1998TrenchR.

elev

numeric elevation (m).

doy

numeric day of year (1-366).

sun

logical indicates whether lizard is in sun (TRUE) or shade (FALSE).

surface

logical indicates whether lizard is on ground surface (TRUE) or above the surface (FALSE, e.g. in a tree).

a_s

numeric lizard solar absorptivity (proportion), a_s = 0.9 Gates1980TrenchR (Table 11.4).

a_l

numeric lizard thermal absorptivity (proportion), a_l = 0.965 Bartlett1967TrenchR.

epsilon_s

numeric surface emissivity of lizards (proportion), epsilon_s = 0.965 Bartlett1967TrenchR.

F_d

numeric the view factor between the surface of the lizard and diffuse solar radiation (proportion). i.e., the portion of the lizard surface that is exposed to diffuse solar radiation Bartlett1967TrenchR.

F_r

numeric the view factor between the surface of the lizard and reflected solar radiation (proportion).

F_a

numeric the view factor between the surface of the lizard and atmospheric radiation (proportion).

F_g

numeric the view factor between the surface of the lizard and ground thermal radiation (proportion).

Details

The proportion of radiation that is direct is determined following Sears2011;textualTrenchR.

Boundary conductance uses a factor of 1.4 to account for increased convection Mitchell1976TrenchR.

References

See Also

Other biophysical models: Grashof_number_Gates(), Grashof_number(), Nusselt_from_Grashof(), Nusselt_from_Reynolds(), Nusselt_number(), Prandtl_number(), Qconduction_animal(), Qconduction_substrate(), Qconvection(), Qemitted_thermal_radiation(), Qevaporation(), Qmetabolism_from_mass_temp(), Qmetabolism_from_mass(), Qnet_Gates(), Qradiation_absorbed(), Qthermal_radiation_absorbed(), Reynolds_number(), T_sky(), Tb_CampbellNorman(), Tb_Gates2(), Tb_Gates(), Tb_butterfly(), Tb_grasshopper(), Tb_limpetBH(), Tb_limpet(), Tb_lizard_Fei(), Tb_mussel(), Tb_salamander_humid(), Tb_snail(), Tbed_mussel(), Tsoil(), actual_vapor_pressure(), boundary_layer_resistance(), external_resistance_to_water_vapor_transfer(), free_or_forced_convection(), heat_transfer_coefficient_approximation(), heat_transfer_coefficient_simple(), heat_transfer_coefficient(), saturation_vapor_pressure(), saturation_water_vapor_pressure()

Examples

Run this code
  Tb_lizard(T_a       = 25, 
            T_g       = 30, 
            u         = 0.1, 
            svl       = 60, 
            m         = 10, 
            psi       = 34, 
            rho_s     = 0.24, 
            elev      = 500, 
            doy       = 200, 
            sun       = TRUE, 
            surface   = TRUE, 
            a_s   = 0.9, 
            a_l   = 0.965, 
            epsilon_s = 0.965, 
            F_d       = 0.8, 
            F_r       = 0.5, 
            F_a       = 0.5, 
            F_g       = 0.5)

Run the code above in your browser using DataLab