set.seed(12345)
## Example 1. Generate a time-to-event endpoint.
## Two columns are returned, one for time, one for event (1/0, 0 for
## A built-in RNG function is used to handle piecewise constant exponential
## distribution
risk <- data.frame(
end_time = c(1, 10, 26.0, 52.0),
piecewise_risk = c(1, 1.01, 0.381, 0.150) * exp(-3.01)
)
pfs <- endpoint(name = 'pfs', type='tte',
generator = PiecewiseConstantExponentialRNG,
risk = risk, endpoint_name = 'pfs')
# run it in R console to display a summary report
# event indicator takes values 0/1
pfs
## Example 2. Generate continuous and binary endpoints using R's built-in
## RNG functions, e.g. rnorm, rexp, rbinom, etc.
ep1 <- endpoint(
name = 'cd4', type = 'non-tte', generator = rnorm, readout = c(cd4=1),
mean = 1.2)
ep2 <- endpoint(
name = 'resp_time', type = 'non-tte', generator = rexp, readout = c(resp_time=0),
rate = 4.5)
ep3 <- endpoint(
name = 'orr', type = 'non-tte', readout = c(orr=3), generator = rbinom,
size = 1, prob = .4)
ep1 # run it in R console. Mean and sd should be comparable to (1.2, 1.0)
ep2 # run it in R console. Median should be comparable to log(2)/4.5 = 0.154
ep3 # run it in R console. Mean and sd should be comparable to 0.4 and 0.49
## Example3: delayed effect
## Use piecewise constant exponential random number generator
## Baseline hazards are piecewise constant
## Hazard ratios are piecewise constant, resulting a delayed effect.
## Note that this example is for explaining the concept of "endpoint".
## Generating endpoint data manually is not the recommended way to use this package.
run <- TRUE
if (!requireNamespace("survminer", quietly = TRUE)) {
run <- FALSE
message("Please install 'survminer' to run this example.")
}
if (!requireNamespace("survival", quietly = TRUE)) {
run <- FALSE
message("Please install 'survival' to run this example.")
}
if(run){
risk1 <- risk
ep1 <- endpoint(
name = 'pfs', type='tte',
generator = PiecewiseConstantExponentialRNG,
risk=risk1, endpoint_name = 'pfs')
risk2 <- risk1
risk2$hazard_ratio <- c(1, 1, .6, .4)
ep2 <- endpoint(
name = 'pfs', type='tte',
generator = PiecewiseConstantExponentialRNG,
risk=risk2, endpoint_name = 'pfs')
n <- 1000
tte <- rbind(ep1$get_generator()(n), ep2$get_generator()(n))
arm <- rep(0:1, each = n)
dat <- data.frame(tte, arm)
sfit <- survival::survfit(
survival::Surv(time = pfs, event = pfs_event) ~ arm, dat)
survminer::ggsurvplot(sfit,
data = dat,
pval = TRUE, # Show p-value
conf.int = TRUE, # Show confidence intervals
risk.table = TRUE, # Add risk table
palette = c("blue", "red"))
## print summary reports for endpoint objects in console
ep1
ep2
}
## Example 4: generate correlated pfs and os
## See vignette('simulatePfsAndOs')
Run the code above in your browser using DataLab