sample_size <- 1000
# Normal
sample.norm <- rtrunc(n = sample_size, mean = 2, sd = 1.5, a = -1)
mlEstimationTruncDist(
sample.norm,
y.min = -1, max.it = 500, delta = 0.33,
print.iter = TRUE
)
# Log-Normal
sample.lognorm <- rtrunc(
n = sample_size, family = "lognormal", meanlog = 2.5, sdlog = 0.5, a = 7
)
ml_lognormal <- mlEstimationTruncDist(
sample.lognorm,
y.min = 7, max.it = 500, tol = 1e-10, delta = 0.3,
print.iter = FALSE
)
ml_lognormal
# Poisson
sample.pois <- rtrunc(
n = sample_size, lambda = 10, a = 4, family = "Poisson"
)
mlEstimationTruncDist(
sample.pois,
y.min = 4, max.it = 500, delta = 0.33,
print.iter = 5
)
# Gamma
sample.gamma <- rtrunc(
n = sample_size, shape = 6, rate = 2, a = 2, family = "Gamma"
)
mlEstimationTruncDist(
sample.gamma,
y.min = 2, max.it = 1500, delta = 0.3,
print.iter = 10
)
# Negative binomial
sample.nbinom <- rtruncnbinom(
sample_size, size = 50, prob = .3, a = 100, b = 120
)
mlEstimationTruncDist(sample.nbinom, r=10)
Run the code above in your browser using DataLab