Calculates the cumulative probability for a given truncated distribution
ptrunc(q, family, ..., lower.tail = TRUE, log.p = FALSE)ptruncnorm(
q,
mean = 0,
sd = 1,
a = -Inf,
b = Inf,
...,
lower.tail = TRUE,
log.p = FALSE
)
ptruncbeta(
q,
shape1,
shape2,
a = 0,
b = 1,
...,
lower.tail = TRUE,
log.p = FALSE
)
ptruncbinom(
q,
size,
prob,
a = 0,
b = size,
...,
lower.tail = TRUE,
log.p = FALSE
)
ptruncpois(q, lambda, a = 0, b = Inf, ..., lower.tail = TRUE, log.p = FALSE)
ptruncchisq(q, df, a = 0, b = Inf, ..., lower.tail = TRUE, log.p = FALSE)
ptrunccontbern(q, lambda, a = 0, b = 1, ...)
ptruncexp(q, rate = 1, a = 0, b = Inf, ..., lower.tail = TRUE, log.p = FALSE)
ptruncgamma(
q,
shape,
rate = 1,
scale = 1/rate,
a = 0,
b = Inf,
...,
lower.tail = TRUE,
log.p = FALSE
)
ptruncinvgamma(
q,
shape,
rate = 1,
scale = 1/rate,
a = 0,
b = Inf,
...,
lower.tail = TRUE,
log.p = FALSE
)
ptruncinvgauss(q, m, s, a = 0, b = Inf, ...)
ptrunclnorm(
q,
meanlog = 0,
sdlog = 1,
a = 0,
b = Inf,
...,
lower.tail = TRUE,
log.p = FALSE
)
ptruncnbinom(
q,
size,
prob,
mu,
a = 0,
b = Inf,
...,
lower.tail = TRUE,
log.p = FALSE
)
The cumulative probability of y.
vector of quantiles
distribution family to use
named distribution parameters and/or truncation limits
(a
, b
)
logical; if TRUE
, probabilities are
\(P(X <= x)\) otherwise, \(P(X > x)\)
logical; if TRUE
, probabilities p are given as log(p)
mean of parent distribution
standard deviation is parent distribution
point of left truncation. For discrete distributions, a
will be
included in the support of the truncated distribution.
point of right truncation
positive shape parameter alpha
positive shape parameter beta
target for number of successful trials, or dispersion parameter (the shape parameter of the gamma mixing distribution). Must be strictly positive, need not be integer.
probability of success on each trial
mean and var of "parent" distribution
degrees of freedom for "parent" distribution
inverse gamma rate parameter
inverse gamma shape parameter
inverse gamma scale parameter
vector of means
vector of dispersion parameters
mean of untruncated distribution
standard deviation of untruncated distribution
alternative parametrization via mean
ptrunc(0)
ptrunc(6, family = "gaussian", mean = 5, sd = 10, b = 7)
pnorm(6, mean = 5, sd = 10) # for comparison
Run the code above in your browser using DataLab