mvNqmc: Truncated multivariate normal cumulative distribution (quasi-Monte Carlo)
Description
Computes an estimate and a deterministic upper bound of the probability Pr\((l<X<u)\),
where \(X\) is a zero-mean multivariate normal vector
with covariance matrix \(\Sigma\), that is, \(X\) is drawn from \(N(0,\Sigma)\).
Infinite values for vectors \(u\) and \(l\) are accepted.
The Monte Carlo method uses sample size \(n\):
the larger \(n\), the smaller the relative error of the estimator.
Usage
mvNqmc(l, u, Sig, n = 1e+05)
Value
a list with components
prob: estimated value of probability Pr\((l<X<u)\)
relErr: estimated relative error of estimator
upbnd: theoretical upper bound on true Pr\((l<X<u)\)
Arguments
l
lower truncation limit
u
upper truncation limit
Sig
covariance matrix of \(N(0,\Sigma)\)
n
number of Monte Carlo simulations
Author
Zdravko I. Botev
Details
Suppose you wish to estimate Pr\((l<AX<u)\),
where \(A\) is a full rank matrix
and \(X\) is drawn from \(N(\mu,\Sigma)\), then you simply compute
Pr\((l-A\mu<AY<u-A\mu)\),
where \(Y\) is drawn from \(N(0, A\Sigma A^\top)\).
References
Z. I. Botev (2017), The Normal Law Under Linear Restrictions:
Simulation and Estimation via Minimax Tilting, Journal of the Royal
Statistical Society, Series B, 79 (1), pp. 1--24.