# Bivariate example.
Sig <- matrix(c(1,0.9,0.9,1), 2, 2);
mu <- c(-3,0); l <- c(-Inf,-Inf); u <- c(-6,Inf);
A <- matrix(c(1,0,-1,1),2,2);
n <- 1e3; # number of sampled vectors
Y <- mvrandn(l - A %*% mu, u - A %*% mu, A %*% Sig %*% t(A), n);
X <- rep(mu, n) + solve(A, diag(2)) %*% Y;
# now apply the inverse map as explained above
plot(X[1,], X[2,]) # provide a scatterplot of exactly simulated points
if (FALSE) {
# Exact Bayesian Posterior Simulation Example.
data("lupus"); # load lupus data
Y = lupus[,1]; # response data
X = lupus[,-1] # construct design matrix
m=dim(X)[1]; d=dim(X)[2]; # dimensions of problem
X=diag(2*Y-1) %*%X; # incorporate response into design matrix
nu=sqrt(10000); # prior scale parameter
C=solve(diag(d)/nu^2+t(X)%*%X);
L=t(chol(t(C))); # lower Cholesky decomposition
Sig=diag(m)+nu^2*X %*% t(X); # this is covariance of Z given beta
l=rep(0,m);u=rep(Inf,m);
est=mvNcdf(l,u,Sig,1e3);
# estimate acceptance probability of Crude Monte Carlo
print(est$upbnd/est$prob)
# estimate the reciprocal of acceptance probability
n=1e4 # number of iid variables
z=mvrandn(l,u,Sig,n);
# sample exactly from auxiliary distribution
beta=L %*% matrix(rnorm(d*n),d,n)+C %*% t(X) %*% z;
# simulate beta given Z and plot boxplots of marginals
boxplot(t(beta))
# plot the boxplots of the marginal
# distribution of the coefficients in beta
print(rowMeans(beta)) # output the posterior means
}
Run the code above in your browser using DataLab