##
## Examples: Completely Randomized Design (CRD)
## More details: demo(package='TukeyC')
##
## The parameters can be: vectors, design matrix and the response variable,
## data.frame or aov
data(CRD2)
## From: design matrix (dm) and response variable (y) - balanced
tk1 <- with(CRD2,
TukeyC(x=dm,
y=y,
model='y ~ x',
which='x'))
summary(tk1)
plot(tk1, id.las=2, rl=FALSE)
## From: design matrix (dm) and response variable (y) - unbalanced
tk1u <- with(CRD2,
TukeyC(x=dm[-1,],
y=y[-1],
model='y ~ x',
which='x'))
summary(tk1u)
## From: data.frame (dfm) - balanced
tk2 <- with(CRD2,
TukeyC(x=dfm,
model='y ~ x',
which='x'))
summary(tk2)
## From: data.frame (dfm) - balanced
tk2u <- with(CRD2,
TukeyC(x=dfm[-1,],
model='y ~ x',
which='x'))
summary(tk2u)
## From: aov - balanced
av <- with(CRD2,
aov(y ~ x,
data=dfm))
summary(av)
tk3 <- with(CRD2,
TukeyC(x=av,
which='x'))
summary(tk3)
## From: aov - unbalanced
avu <- with(CRD2,
aov(y ~ x,
data=dfm[-1,]))
summary(avu)
tk3u <- with(CRD2,
TukeyC(x=avu,
which='x'))
summary(tk3u)
##
## Example: Randomized Complete Block Design (RCBD)
## More details: demo(package='TukeyC')
##
## The parameters can be: design matrix and the response variable,
## data.frame or aov
data(RCBD)
## Design matrix (dm) and response variable (y)
tk1 <- with(RCBD,
TukeyC(x=dm,
y=y,
model='y ~ blk + tra',
which='tra'))
summary(tk1)
plot(tk1)
## From: data.frame (dfm), which='tra'
tk2 <- with(RCBD,
TukeyC(x=dfm,
model='y ~ blk + tra',
which='tra'))
summary(tk2)
##
## Example: Latin Squares Design (LSD)
## More details: demo(package='TukeyC')
##
## The parameters can be: design matrix and the response variable,
## data.frame or aov
data(LSD)
## From: design matrix (dm) and response variable (y)
tk1 <- with(LSD,
TukeyC(x=dm,
y=y,
model='y ~ rows + cols + tra',
which='tra'))
summary(tk1)
plot(tk1)
## From: data.frame
tk2 <- with(LSD,
TukeyC(x=dfm,
model='y ~ rows + cols + tra',
which='tra'))
summary(tk2)
## From: aov
av <- with(LSD,
aov(y ~ rows + cols + tra,
data=dfm))
summary(av)
tk3 <- TukeyC(av,
which='tra')
summary(tk3)
##
## Example: Factorial Experiment (FE)
## More details: demo(package='TukeyC')
##
## The parameters can be: design matrix and the response variable,
## data.frame or aov
data(FE)
## From: design matrix (dm) and response variable (y)
## Main factor: N
tk1 <- with(FE,
TukeyC(x=dm,
y=y,
model='y ~ blk + N*P*K',
which='N'))
summary(tk1)
plot(tk1)
## Nested: p1/N
ntk1 <- with(FE,
TukeyC.nest(x=dm,
y=y,
model='y ~ blk + N*P*K',
which='N:P',
fl2=1))
summary(ntk1)
## Nested: k1/P
ntk2 <- with(FE,
TukeyC.nest(x=dm,
y=y,
model='y ~ blk + N*P*K',
which='P:K',
fl2=1))
summary(ntk2)
## Nested: k2/p2/N
ntk3 <- with(FE,
TukeyC.nest(x=dm,
y=y,
model='y ~ blk + N*P*K',
which='N:P:K',
fl2=2,
fl3=2))
summary(ntk3)
## Nested: k1/n1/P
ntk4 <- with(FE,
TukeyC.nest(x=dm,
y=y,
model='y ~ blk + P*N*K',
which='P:N:K',
fl2=1,
fl3=1))
summary(ntk4)
## Nested: p1/n1/K
ntk5 <- with(FE,
TukeyC.nest(x=dm,
y=y,
model='y ~ blk + K*N*P',
which='K:N:P',
fl2=1,
fl3=1))
summary(ntk5)
##
## Example: Split-plot Experiment (SPE)
## More details: demo(package='TukeyC')
##
data(SPE)
## The parameters can be: design matrix and the response variable,
## data.frame or aov
## From: design matrix (dm) and response variable (y)
## Main factor: P
tk1 <- with(SPE,
TukeyC(x=dm,
y=y,
model='y ~ blk + SP*P + Error(blk/P)',
which='P',
error='blk:P'))
summary(tk1)
## Main factor: SP
tk2 <- with(SPE,
TukeyC(x=dm,
y=y,
model='y ~ blk + SP*P + Error(blk/P)',
which='SP',
error='Within'))
summary(tk2)
plot(tk2)
## Nested: sp/p=1
tkn1 <- with(SPE,
TukeyC.nest(x=dm,
y=y,
model='y ~ blk + SP*P + Error(blk/P)',
which='SP:P',
error='Within',
fl2=1 ))
summary(tkn1)
##
## Example: Split-split-plot Experiment (SSPE)
## More details: demo(package='TukeyC')
##
data(SSPE)
## From: design matrix (dm) and response variable (y)
## Main factor: P
tk1 <- with(SSPE,
TukeyC(dm,
y,
model='y ~ blk + SSP*SP*P + Error(blk/P/SP)',
which='P',
error='blk:P'))
summary(tk1)
# Main factor: SP
tk2 <- with(SSPE,
TukeyC(dm,
y,
model='y ~ blk + SSP*SP*P + Error(blk/P/SP)',
which='SP',
error='blk:P:SP'))
summary(tk2)
# Main factor: SSP
tk3 <- with(SSPE,
TukeyC(dm,
y,
model='y ~ blk + SSP*SP*P + Error(blk/P/SP)',
which='SSP',
error='Within'))
summary(tk3)
plot(tk3)
## Nested: p1/SP
tkn1 <- with(SSPE,
TukeyC.nest(dm,
y,
model='y ~ blk + SSP*SP*P + Error(blk/P/SP)',
which='SP:P',
error='blk:P:SP',
fl2=1))
summary(tkn1)
## From: aovlist
av <- with(SSPE,
aov(y ~ blk + SSP*SP*P + Error(blk/P/SP),
data=dfm))
summary(av)
## Nested:sp/sp/SSP (at various levels of P and SP)
tkn6 <- TukeyC.nest(av,
which='SSP:SP:P',
error='Within',
fl2=1,
fl3=1)
summary(tkn6)
plot(tkn6)
tkn7 <- TukeyC.nest(av,
which='SSP:SP:P',
error='Within',
fl2=2,
fl3=1)
summary(tkn7)
plot(tkn7)
Run the code above in your browser using DataLab