data(MktDATA, package = "UBStats")
# Character vectors, factors, and discrete numeric vectors
distr.table.x(Education, data = MktDATA)
distr.table.x(Children, freq = c("count","prop","cum"),
data = MktDATA)
# Numerical variable classified into intervals
# - Classes of equal width
distr.table.x(AOV, breaks = 6, freq = c("Count","Prop","Perc","Cum"),
p.digits = 2, data = MktDATA)
# - Classes with specified endpoints
distr.table.x(AOV, breaks = c(0,20,30,50,100,180),
freq = c("Count","Perc","Cum","Densities"),
p.digits = 2, data = MktDATA)
# Numerical variable measured in classes
# - Variable measured in classes
distr.table.x(Income, freq = c("count","prop","cum","dens"),
interval = TRUE, data = MktDATA)
# - An example of non-consistent intervals.
# Densities are not calculated
x.inconsistent <- c(rep("0;10",30),rep("10;20",25),rep("25;8",25),
rep("15;31",15),rep("20;45",16),rep("30;40",18))
distr.table.x(x.inconsistent, freq = c("count","prop","cum","dens"),
interval = TRUE)
# Arguments adj.breaks, use.scientific, and force.digits
# A variable with a very wide range (very small densities)
LargeX <- MktDATA$AOV*5000000
# - Default: manages possible excess of rounding
distr.table.x(LargeX, breaks = 5,
freq = c("count","percent","densities"))
# - Forcing digits to the default values
distr.table.x(LargeX, breaks = 5,
freq=c("count","percent","dens"),
force.digits = TRUE)
# - Scientific notation for frequencies/densities
distr.table.x(LargeX, breaks = 5,
freq = c("count","percent","dens"),
use.scientific = TRUE)
# - Scientific notation both for intervals’ endpoints
# and for frequencies/densities
distr.table.x(LargeX, breaks = 5, adj.breaks = FALSE,
freq = c("count","percent","dens"),
use.scientific = TRUE)
# Output a dataframe with the table
table.AOV<-distr.table.x(AOV, breaks = c(0,20,30,50,100,180),
freq = c("Count","Perc","Cum","Dens"),
data = MktDATA)
Run the code above in your browser using DataLab