NOTE: the dataset must be dense matrix in UCSC Xena data hubs.
vis_identifier_multi_cor(
dataset,
ids,
samples = NULL,
matrix.type = c("full", "upper", "lower"),
type = c("parametric", "nonparametric", "robust", "bayes"),
partial = FALSE,
sig.level = 0.05,
p.adjust.method = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr",
"none"),
color_low = "#E69F00",
color_high = "#009E73",
...
)a (gg)plot object.
the dataset to obtain identifiers.
the molecule identifiers.
default is NULL, can be common sample names for two datasets.
Character, "upper" (default), "lower", or "full",
display full matrix, lower triangular or upper triangular matrix.
A character specifying the type of statistical approach:
"parametric"
"nonparametric"
"robust"
"bayes"
You can specify just the initial letter.
Can be TRUE for partial correlations. For Bayesian partial
correlations, "full" instead of pseudo-Bayesian partial correlations (i.e.,
Bayesian correlation based on frequentist partialization) are returned.
Significance level (Default: 0.05). If the p-value in
p-value matrix is bigger than sig.level, then the corresponding
correlation coefficient is regarded as insignificant and flagged as such in
the plot.
Adjustment method for p-values for multiple
comparisons. Possible methods are: "holm" (default), "hochberg",
"hommel", "bonferroni", "BH", "BY", "fdr", "none".
the color code for lower value mapping.
the color code for higher value mapping.
other parameters passing to ggstatsplot::ggcorrmat.
if (FALSE) {
dataset <- "TcgaTargetGtex_rsem_isoform_tpm"
ids <- c("TP53", "KRAS", "PTEN")
vis_identifier_multi_cor(dataset, ids)
}
Run the code above in your browser using DataLab