Learn R Programming

UHM (version 0.3.0)

Prediction: Prediction of new observations

Description

Computing a prediction for new observations

Usage

Prediction(object, data)

Value

Estimation, standard errors and 95% credible intervals for predictions

Arguments

object

an object inheriting from class ZIHR

data

dataset of observed variables with the same format as the data in the object

Author

Taban Baghfalaki t.baghfalaki@gmail.com, Mojtaba Ganjali m-ganjali@sbu.ac.ir

Details

It provides a summary of the output of the ZIHR function, including parameter estimations.

See Also

ZIHR

Examples

Run this code
# Example 1
data(dataD)
index <- 1:(dim(dataD)[1])
IND_new <- sample(index, .5 * length(index))
datat <- dataD[IND_new, ]
datav <- dataD[-IND_new, ]
modelY <- y~x1 + x2
modelZ <- z~x1
D1 <- ZIHR(modelY, modelZ,
           data = datat, n.chains = 2, n.iter = 1000,
           n.burnin = 500, n.thin = 1, family = "Poisson"
)

# \donttest{
  SummaryZIHR(D1)
  Prediction(D1, data = datav)


  D2 <- ZIHR(modelY, modelZ,
             data = datat, n.chains = 2, n.iter = 1000,
             n.burnin = 500, n.thin = 1, family = "Bell"
  )
  SummaryZIHR(D2)



  # Example 2
  data(dataC)
  modelY <- y~x1 + x2
  modelZ <- z~x1
  C <- ZIHR(modelY, modelZ,
            data = dataC, n.chains = 2, n.iter = 1000,
            n.burnin = 500, n.thin = 1, family = "Gaussian"
  )
  SummaryZIHR(C)

  Prediction(C, data = datav)



  # Example 3
  data(dataP)
  modelY <- y~x1 + x2
  modelZ <- z~x1
  P1 <- ZIHR(modelY, modelZ,
             data = dataP, n.chains = 2, n.iter = 1000,
             n.burnin = 500, n.thin = 1, family = "Exponential"
  )
  SummaryZIHR(P1)

  P2 <- ZIHR(modelY, modelZ,
             data = dataP, n.chains = 2, n.iter = 1000,
             n.burnin = 500, n.thin = 1, family = "Gamma"
  )
  SummaryZIHR(P2)

  P3 <- ZIHR(modelY, modelZ,
             data = dataP, n.chains = 2, n.iter = 1000,
             n.burnin = 500, n.thin = 1, family = "Weibull"
  )
  SummaryZIHR(P3)


  # Example B
  data(dataB)
  modelY <- y~x1 + x2
  modelZ <- z~x1
  P <- ZIHR(modelY, modelZ,
            data = dataB, n.chains = 2, n.iter = 1000,
            n.burnin = 500, n.thin = 1, family = "Beta"
  )
  SummaryZIHR(P)

  # Example C
  data(dataI)
  modelY <- y~x1 + x2
  modelZ <- z~x1
  P4 <- ZIHR(modelY, modelZ,
             data = dataI, n.chains = 2, n.iter = 1000,
             n.burnin = 500, n.thin = 1, family = "inverse.gaussian"
  )
  SummaryZIHR(P4)
# }

Run the code above in your browser using DataLab