# Example 1
data(dataD)
index <- 1:(dim(dataD)[1])
IND_new <- sample(index, .5 * length(index))
datat <- dataD[IND_new, ]
datav <- dataD[-IND_new, ]
modelY <- y~x1 + x2
modelZ <- z~x1
D1 <- ZIHR(modelY, modelZ,
data = datat, n.chains = 2, n.iter = 1000,
n.burnin = 500, n.thin = 1, family = "Poisson"
)
# \donttest{
SummaryZIHR(D1)
Prediction(D1, data = datav)
D2 <- ZIHR(modelY, modelZ,
data = datat, n.chains = 2, n.iter = 1000,
n.burnin = 500, n.thin = 1, family = "Bell"
)
SummaryZIHR(D2)
# Example 2
data(dataC)
modelY <- y~x1 + x2
modelZ <- z~x1
C <- ZIHR(modelY, modelZ,
data = dataC, n.chains = 2, n.iter = 1000,
n.burnin = 500, n.thin = 1, family = "Gaussian"
)
SummaryZIHR(C)
Prediction(C, data = datav)
# Example 3
data(dataP)
modelY <- y~x1 + x2
modelZ <- z~x1
P1 <- ZIHR(modelY, modelZ,
data = dataP, n.chains = 2, n.iter = 1000,
n.burnin = 500, n.thin = 1, family = "Exponential"
)
SummaryZIHR(P1)
P2 <- ZIHR(modelY, modelZ,
data = dataP, n.chains = 2, n.iter = 1000,
n.burnin = 500, n.thin = 1, family = "Gamma"
)
SummaryZIHR(P2)
P3 <- ZIHR(modelY, modelZ,
data = dataP, n.chains = 2, n.iter = 1000,
n.burnin = 500, n.thin = 1, family = "Weibull"
)
SummaryZIHR(P3)
# Example B
data(dataB)
modelY <- y~x1 + x2
modelZ <- z~x1
P <- ZIHR(modelY, modelZ,
data = dataB, n.chains = 2, n.iter = 1000,
n.burnin = 500, n.thin = 1, family = "Beta"
)
SummaryZIHR(P)
# Example C
data(dataI)
modelY <- y~x1 + x2
modelZ <- z~x1
P4 <- ZIHR(modelY, modelZ,
data = dataI, n.chains = 2, n.iter = 1000,
n.burnin = 500, n.thin = 1, family = "inverse.gaussian"
)
SummaryZIHR(P4)
# }
Run the code above in your browser using DataLab