50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

Umoments (version 1.0.1)

uM6pool: Pooled central moment estimates - two-sample

Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM6pool(m2, m3, m4, m6, n_x, n_y)

Value

Unbiased estimate of a sixth central moment.

Arguments

m2

naive biased variance estimate m2=1/(nx+ny)i=1nx((XiX¯)2+i=1ny((YiY¯)2 for vectors X and Y.

m3

naive biased third central moment estimate m3=1/(nx+ny)i=1nx((XiX¯)3+i=1ny((YiY¯)3 for vectors X and Y.

m4

naive biased fourth central moment estimate m4=1/(nx+ny)i=1nx((XiX¯)4+i=1ny((YiY¯)4 for vectors X and Y.

m6

naive biased sixth central moment estimate m6=1/(nx+ny)i=1nx((XiX¯)6+i=1ny((YiY¯)6 for vectors X and Y.

n_x

number of observations in the first group.

n_y

number of observations in the second group.

See Also

Other pooled estimates (two-sample): uM2M3pool(), uM2M4pool(), uM2pool(), uM2pow2pool(), uM2pow3pool(), uM3pool(), uM3pow2pool(), uM4pool(), uM5pool()

Examples

Run this code
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
mx <- mean(smpx)
my <- mean(smpy)
m  <- numeric(6)
for (j in 2:6) {
  m[j] <- mean(c((smpx - mx)^j, (smpy - my)^j))
}
uM6pool(m[2], m[3], m[4], m[6], nx, ny)

Run the code above in your browser using DataLab