
A SurvivalModel
class represents the information for simulating
survival times for each patient.
SurvivalModel(baseHazard = 1/5,
accrual = 5,
followUp = 1,
units = 12,
unitName = "months")
# S4 method for SurvivalModel
rand(object, n, beta = NULL, ...)
The SurvivalModel
generator returns an object of class
SurvivalModel
.
The rand
method returns a data.frame with components:
time to event
whether the data is censored
numeric scalar describing the underlying hazard rate at baseline levels of covariates
numeric scalar representing number of patient accrual years
numeric scalar representing length of follow up, in years
numeric scalar representing number of units per year where
units are specified by unitName
character string representing the unit
argument type
object of class SurvivalModel
numeric scalar specifying quantity of random numbers
numeric vector specifying beta parameters for patients
extra arguments for generic routines
Although objects of the class can be created by a direct call to
new, the preferred method is to use the
SurvivalModel
generator function.
baseHazard
:see corresponding argument above
accrual
:see corresponding argument above
followUp
:see corresponding argument above
units
:see corresponding argument above
unitName
:see corresponding argument above
Simulate survival data for n
patients given beta
.
Kevin R. Coombes krc@silicovore.com, Jiexin Zhang jiexinzhang@mdanderson.org,
Zhang J, Coombes KR.
Sources of variation in false discovery rate estimation include
sample size, correlation, and inherent differences between groups.
BMC Bioinformatics. 2012; 13 Suppl 13:S1.
CancerModel
showClass("SurvivalModel")
sm <- SurvivalModel()
## Generate data from base model
outcome <- rand(sm, 100)
summary(outcome)
## Generate data from five classes with different beta parameters
beta <- rep(rnorm(5, 0, 2), each = 20)
outcome <- rand(sm, 100, beta = beta)
summary(outcome)
Run the code above in your browser using DataLab