Unlimited learning, half price | 50% off

Last chance! 50% off unlimited learning

Sale ends in


UniversalCVI (version 1.2.0)

plot_idx: Plots for visualizing CVIs

Description

Plot and compare upto 8 indices computed by the algorithms in this package.

Usage

plot_idx(idxresult,selected.idx = NULL)

Value

Plots of upto 8 cluster validity indices computed from FzzyCVIs, WP.IDX, GC.IDX, CCV.IDX, XB.IDX, WL.IDX, TANG.IDX, PBM.IDX, KWON.IDX, KWON2.IDX, KPBM.IDX, HF.IDX, Hvalid, Wvalid, SF.IDX, PB.IDX, DI.IDX, DB.IDX, CSL.IDX, CH.IDX or STRPBM.IDX. When using the isolated index algorithm, all the plots computed by that algorithm will be shown. When using FzzyCVIs or Hvalid with more than 8 selected indices, the first 8 indices will be plotted.

Arguments

idxresult

a result from one of the algorithms FzzyCVIs, WP.IDX, GC.IDX, CCV.IDX, XB.IDX, WL.IDX, TANG.IDX, PBM.IDX, KWON.IDX, KWON2.IDX, KPBM.IDX, HF.IDX, Hvalid, Wvalid, SF.IDX, PB.IDX, DI.IDX, DB.IDX, CSL.IDX, CH.IDX or STRPBM.IDX.

selected.idx

a numeric vector indicates a part of the indexes from the idxresult in respective order selected by a user. For instance, selected.idx = 3 or selected.idx = c(1,3,5) may be selected. If not specified, the full idxresult will be considered.

Author

Nathakhun Wiroonsri and Onthada Preedasawakul

References

N. Wiroonsri, O. Preedasawakul, "A correlation-based fuzzy cluster validity index with secondary options detector," arXiv:2308.14785, 2023

See Also

FzzyCVIs, WP.IDX, XB.IDX, Hvalid

Examples

Run this code

library(UniversalCVI)

# Iris data
x = iris[,1:4]

# ----Compute all the indices by FzzyCVIs ----
FCVIs = FzzyCVIs(scale(x), cmax = 10, cmin = 2, indexlist = 'all', corr = 'pearson',
                 method = 'FCM', fzm = 2, iter = 100, nstart = 20, NCstart = TRUE)

# plots of the eight indices by default
plot_idx(idxresult = FCVIs)

# plots of a specific selected.idx
plot_idx(idxresult = FCVIs, selected.idx = c(2,5,7))

# ----Compute all the indices by Wvalid ----
FCM.NC = Wvalid(scale(x), kmax = 10, kmin=2, method = 'kmeans',
  corr='pearson', nstart=100, NCstart = TRUE)

# plots of the four indices by default
plot_idx(idxresult = FCM.NC)

# ----Compute all the indices by XB.IDX ----

FCM.XB = XB.IDX(scale(x), cmax = 10, cmin = 2, method = "FCM",
  fzm = 2, nstart = 20, iter = 100)
plot_idx(idxresult = FCM.XB)

Run the code above in your browser using DataLab