# load in the data
library(survival)
data(pbc, package = "survival")
# re-scale by year
pbcseq <- transform(pbcseq, day_use = day / 365.25)
pbc <- transform(pbc, time_use = time / 365.25)
# create the marker terms
m1 <- marker_term(
log(bili) ~ 1, id = id, data = pbcseq,
time_fixef = bs_term(day_use, df = 5L),
time_rng = poly_term(day_use, degree = 1L, raw = TRUE, intercept = TRUE))
m2 <- marker_term(
albumin ~ 1, id = id, data = pbcseq,
time_fixef = bs_term(day_use, df = 5L),
time_rng = poly_term(day_use, degree = 1L, raw = TRUE, intercept = TRUE))
# base knots on observed event times
bs_term_knots <-
with(pbc, quantile(time_use[status == 2], probs = seq(0, 1, by = .2)))
boundary <- c(bs_term_knots[ c(1, length(bs_term_knots))])
interior <- c(bs_term_knots[-c(1, length(bs_term_knots))])
# create the survival term
s_term <- surv_term(
Surv(time_use, status == 2) ~ 1, id = id, data = pbc,
time_fixef = bs_term(time_use, Boundary.knots = boundary, knots = interior))
# create the C++ object to do the fitting
model_ptr <- joint_ms_ptr(
markers = list(m1, m2), survival_terms = s_term,
max_threads = 2L)
Run the code above in your browser using DataLab