Training eta parameter for the varmer function evaluating a vector of etas using Cross-validation. The best eta is the one yielding the highest KGE metric.
fit.varmer(
stations.sf,
v,
etas = c(10, 100, 500, 1000, 5000),
idw_formula = Variable ~ 1,
factor_agg = 2,
drty.out = tempdir(),
apply_varmer = T
)
data.frame with the observations metadata
grided image
(optional) vector of eta values to evaluate in a CV exercise
formula for the idw interpolation
scalar which defines the aggregation factor to apply to the raster images in order to reduce computation requirements for solving varmer
(optional) output folder for the CV metrics
(optional) boolean which determines if a merging image is produced with the best eta