Evaluates the Log-Adjusted Empirical Likelihood (AEL) (Chen, Variyath, and Abraham 2008) for a given data set, moment conditions and parameter values.
The AEL function is formulated as
$$
\log \text{AEL}(\boldsymbol{\theta}) = \max_{\mathbf{w}'} \sum\limits_{i=1}^{n+1} \log(w_i'),
$$
where \(\mathbf{z}_{n+1}\) is a pseudo-observation that satisfies
$$
h(\mathbf{z}_{n+1}, \boldsymbol{\theta}) = -\frac{a_n}{n} \sum\limits_{i=1}^n h(\mathbf{z}_i, \boldsymbol{\theta})
$$
for some constant \(a_n > 0\) that may (but not necessarily) depend on \(n\), and \(\mathbf{w}' = (w_1', \ldots, w_n', w_{n+1}')\) is a vector of probability weights that define a discrete distribution on \(\{\mathbf{z}_1, \ldots, \mathbf{z}_n, \mathbf{z}_{n+1}\}\), and are subject to the constraints
$$
\sum\limits_{i=1}^{n+1} w_i' h(\mathbf{z}_i, \boldsymbol{\theta}) = 0, \quad \text{and} \quad \sum\limits_{i=1}^{n+1} w_i' = 1.
$$
Here, the maximizer \(\tilde{\mathbf{w}}\) is of the form
$$
\tilde{w}_i = \frac{1}{n+1} \frac{1}{1 + \lambda_{\text{AEL}}^\top h(\mathbf{z}_i, \boldsymbol{\theta})},
$$
where \(\lambda_{\text{AEL}}\) satisfies the constraints
$$
\frac{1}{n+1} \sum\limits_{i=1}^{n+1} \frac{h(\mathbf{z}_i, \boldsymbol{\theta})}{1 + \lambda_{\text{AEL}}^\top h(\mathbf{z}_i, \boldsymbol{\theta})} = 0, \quad \text{and} \quad
\frac{1}{n+1} \sum\limits_{i=1}^{n+1} \frac{1}{1 + \lambda_{\text{AEL}}^\top h(\mathbf{z}_i, \boldsymbol{\theta})} = 1.
$$