## Not run:
# data(dataEP05A2_2)
# ub.dat <- dataEP05A2_2[-c(11,12,23,32,40,41,42),]
# fit1 <- anovaMM(y~day/(run), ub.dat)
# fit2 <- remlMM(y~day/(run), ub.dat)
# fe1 <- fixef(fit1)
# fe1
# fe2 <- fixef(fit2)
# fe2
# lc.mat <- getL( fit1, c("day1-day2", "day3-day6"))
# lc.mat
# test.fixef(fit1, lc.mat, ddfm="satt")
# test.fixef(fit2, lc.mat, ddfm="satt")
#
# # some inferential statistics about fixed effects estimates
# L <- diag(nrow(fe1))
# rownames(L) <- colnames(L) <- rownames(fe1)
# test.fixef(fit1, L)
# test.fixef(fit2, L)
#
# # using different "residual" method determining DFs
# test.fixef(fit1, L, ddfm="res")
# test.fixef(fit2, L, ddfm="res")
#
# # having 'opt=TRUE' is a good idea to save time
# # (in case of balanced designs)
# data(VCAdata1)
# datS3 <- VCAdata1[VCAdata1$sample==3,]
# fit3 <- anovaMM(y~(lot+device)/(day)/run, datS3)
# fit4 <- remlMM(y~(lot+device)/(day)/run, datS3)
# fit3$VarCov <- vcovVC(fit3)
# fe3 <- fixef(fit3)
# fe4 <- fixef(fit4)
# L <- diag(nrow(fe3))
# rownames(L) <- colnames(L) <- rownames(fe)
# system.time(tst1 <- test.fixef(fit3, L))
# system.time(tst2 <- test.fixef(fit3, L, opt=FALSE))
# system.time(tst3 <- test.fixef(fit4, L, opt=FALSE))
# tst1
# tst2
# tst3
# ## End(Not run)
Run the code above in your browser using DataLab