if (FALSE) {
data(dataEP05A2_3)
# simulate very large numbers of the response
dat3 <- dataEP05A2_3
dat3$y <- dat3$y * 1e8
# now try to fit 21-day model to this data
fit <- anovaVCA(y~day/run, dat3)
# now use 'Scale' function
fit1 <- Scale("anovaVCA", y~day/run, dat3)
fit2 <- Scale(anovaVCA, y~day/run, dat3) # also works
fit3 <- Scale(anovaVCA(y~day/run, dat3)) # works as well
# back to original scale
(fit1 <- reScale(fit1))
(fit2 <- reScale(fit2))
(fit3 <- reScale(fit3))
# reference values
fit0 <- anovaVCA(y~day/run, dataEP05A2_3, MME=TRUE)
inf0 <- VCAinference(fit0, VarVC=TRUE)
fit1 <- Scale(anovaVCA(y~day/run, dataEP05A2_3, MME=TRUE))
inf1 <- VCAinference(fit1, VarVC=TRUE)
inf1 <- reScale(inf1)
# compare to reference
print(inf0, what="VC")
print(inf1, what="VC")
print(inf0, what="SD")
print(inf1, what="SD")
print(inf0, what="CV")
print(inf1, what="CV")
# now use REML-based estimation
fit0 <- remlVCA(y~day/run, dataEP05A2_3)
inf0 <- VCAinference(fit0)
fit1 <- Scale("remlVCA", y~day/run, dataEP05A2_3)
inf1 <- VCAinference(fit1)
inf1 <- reScale(inf1)
# compare to reference
print(inf0, what="VC")
print(inf1, what="VC")
print(inf0, what="SD")
print(inf1, what="SD")
print(inf0, what="CV")
print(inf1, what="CV")
# scaling also works with by-processing
data(VCAdata1)
fit <- Scale(anovaVCA(y~(device+lot)/day/run, VCAdata1, by="sample"))
reScale(fit)
}
Run the code above in your browser using DataLab