if (FALSE) {
data(dataEP05A2_2)
# assuming 'day' as fixed, 'run' as random
anovaMM(y~day/(run), dataEP05A2_2)
# assuming both as random leads to same results as
# calling anovaVCA
anovaMM(y~(day)/(run), dataEP05A2_2)
anovaVCA(y~day/run, dataEP05A2_2)
# use different approaches to estimating the covariance of
# variance components (covariance parameters)
dat.ub <- dataEP05A2_2[-c(11,12,23,32,40,41,42),] # get unbalanced data
m1.ub <- anovaMM(y~day/(run), dat.ub, VarVC.method="scm")
m2.ub <- anovaMM(y~day/(run), dat.ub, VarVC.method="gb")
V1.ub <- round(vcovVC(m1.ub), 12)
V2.ub <- round(vcovVC(m2.ub), 12)
all(V1.ub == V2.ub)
# fit a larger random model
data(VCAdata1)
fitMM1 <- anovaMM(y~((lot)+(device))/(day)/(run), VCAdata1[VCAdata1$sample==1,])
fitMM1
# now use function tailored for random models
fitRM1 <- anovaVCA(y~(lot+device)/day/run, VCAdata1[VCAdata1$sample==1,])
fitRM1
# there are only 3 lots, take 'lot' as fixed
fitMM2 <- anovaMM(y~(lot+(device))/(day)/(run), VCAdata1[VCAdata1$sample==2,])
# the following model definition is equivalent to the one above,
# since a single random term in an interaction makes the interaction
# random (see the 3rd reference for details on this topic)
fitMM3 <- anovaMM(y~(lot+(device))/day/run, VCAdata1[VCAdata1$sample==2,])
# fit same model for each sample using by-processing
lst <- anovaMM(y~(lot+(device))/day/run, VCAdata1, by="sample")
lst
# fit mixed model originally from 'nlme' package
library(nlme)
data(Orthodont)
fit.lme <- lme(distance~Sex*I(age-11), random=~I(age-11)|Subject, Orthodont)
# re-organize data for using 'anovaMM'
Ortho <- Orthodont
Ortho$age2 <- Ortho$age - 11
Ortho$Subject <- factor(as.character(Ortho$Subject))
fit.anovaMM1 <- anovaMM(distance~Sex*age2+(Subject)*age2, Ortho)
# use simplified formula avoiding unnecessary terms
fit.anovaMM2 <- anovaMM(distance~Sex+Sex:age2+(Subject)+(Subject):age2, Ortho)
# and exclude intercept
fit.anovaMM3 <- anovaMM(distance~Sex+Sex:age2+(Subject)+(Subject):age2-1, Ortho)
# compare results
fit.lme
fit.anovaMM1
fit.anovaMM2
fit.anovaMM3
# are there a sex-specific differences?
cmat <- getL(fit.anovaMM3, c("SexMale-SexFemale", "SexMale:age2-SexFemale:age2"))
cmat
test.fixef(fit.anovaMM3, L=cmat)
# former versions of the package used R-function 'lm' and 'anova',
# which is significantly slower for sufficiently large/complex models
data(realData)
datP1 <- realData[realData$PID==1,]
system.time(anova.lm.Tab <- anova(lm(y~lot/calibration/day/run, datP1)))
# Using the sweeping approach for estimating ANOVA Type-1 sums of squares
# this is now the default setting.
system.time(anovaMM.Tab1 <- anovaMM(y~lot/calibration/day/run, datP1))
# compare results, note that the latter corresponds to a linear model,
# i.e. without random effects. Various matrices have already been computed,
# e.g. "R", "V" (which are identical in this case).
anova.lm.Tab
anovaMM.Tab1
}
Run the code above in your browser using DataLab