
logistic1(llocation="identity", scale.arg=1, method.init=1)
logistic2(llocation="identity", lscale="loge",
ilocation=NULL, iscale=NULL, method.init=1, zero=NULL)
Links
for more choices.Links
for more choices.method.init
. Assigning a value will override
the argument method.init
.method.init
. Assigning a value will override
the argument method.init
.1
or 2
which
specifies the initialization method. If failure to converge occurs
try the other value."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
rrvglm
and vgam
. logistic1
estimates the location parameter only while
logistic2
estimates both parameters. By default,
$\eta_1=l$ and $\eta_2=\log(s)$ for
logistic2
.
Evans, M., Hastings, N. and Peacock, B. (2000) Statistical Distributions, New York: Wiley-Interscience, Third edition.
Castillo, E., Hadi, A. S., Balakrishnan, N. Sarabia, J. S. (2005) Extreme Value and Related Models with Applications in Engineering and Science, Hoboken, N.J.: Wiley-Interscience, p.130.
rlogis
,
bilogistic4
.# location unknown, scale known
n = 500
x = runif(n)
y = rlogis(n, loc=1+5*x, scale=4)
fit = vglm(y ~ x, logistic1(scale=4), trace=TRUE, crit="c")
coef(fit, matrix=TRUE)
# Both location and scale unknown
n = 2000
x = runif(n)
y = rlogis(n, loc=1+5*x, scale=exp(0+1*x))
fit = vglm(y ~ x, logistic2)
coef(fit, matrix=TRUE)
vcov(fit)
summary(fit)
Run the code above in your browser using DataLab