frank(lapar="loge", eapar=list(), iapar=2, nsimEIM=250)
Links
for more choices.earg
in Links
for general information."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
and vgam
.When $0 < \alpha < 1$ the probability density function $h_{\alpha}(y_1,y_2)$ is symmetric with respect to the lines $y_2=y_1$ and $y_2=1-y_1$. When $\alpha > 1$ then $h_{\alpha}(y_1,y_2) = h_{1/\alpha}(1-y_1,y_2)$.
If $\alpha=1$ then $H(y_1,y_2) = y_1 y_2$, i.e., uniform on the unit square. As $\alpha$ approaches 0 then $H(y_1,y_2) = \min(y_1,y_2)$. As $\alpha$ approaches infinity then $H(y_1,y_2) = \max(0, y_1+y_2-1)$.
The default is to use Fisher scoring implemented using
rfrank
.
For intercept-only models an alternative is to set nsimEIM=NULL
so that a variant of Newton-Raphson is used.
rfrank
,
fgm
.ymat = rfrank(n=2000, alpha=exp(4))
plot(ymat, col="blue")
fit = vglm(ymat ~ 1, fam=frank, trace=TRUE)
coef(fit, matrix=TRUE)
Coef(fit)
vcov(fit)
head(fitted(fit))
summary(fit)
Run the code above in your browser using DataLab