dposbinom(x, size, prob, log = FALSE)
pposbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
qposbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rposbinom(n, size, prob)
posbinomial
.pbinom
etc.dposbinom
gives the density,
pposbinom
gives the distribution function,
qposbinom
gives the quantile function, and
rposbinom
generates random deviates.prob
above.
As $\mu$ increases, the positive-binomial and binomial
distributions become more similar.
Unlike similar functions for the binomial distribution, a zero value
of prob
is not permitted here.posbinomial
,
rbinom
.prob = 0.2
size = 10
y = rposbinom(n=1000, size, prob)
table(y)
mean(y) # Sample mean
prob / (1-(1-prob)^size) # Population mean
(i = dposbinom(0:size, size, prob))
cumsum(i) - pposbinom(0:size, size, prob) # Should be 0s
table(rposbinom(100, size, prob))
table(qposbinom(runif(1000), size, prob))
round(dposbinom(1:10, size, prob) * 1000) # Should be similar
barplot(rbind(dposbinom(x, size, prob),
dbinom(x, size, prob)),
beside = TRUE, col = c("blue","green"),
main=paste("Positive-binomial(", size, ",", prob, ") (blue) vs",
" Binomial(", size, ",", prob, ") (green)", sep=""),
names.arg = as.character(x), las=1)
Run the code above in your browser using DataLab