
lino(lshape1="loge", lshape2="loge", llambda="loge",
eshape1=list(), eshape2=list(), elambda=list(),
ishape1=NULL, ishape2=NULL, ilambda=1, zero=NULL)
Links
for more choices.Links
for more choices.earg
in Links
for general information.NULL
value means
one is computed internally. The argument ilambda
must
be numeric, and the default corresponds to a standard beta distribution."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.beta
).
The mean is a complicated function involving the Gauss hypergeometric
function.
If $X$ has a lino
distribution with parameters
shape1
, shape2
, lambda
, then
$Y=\lambda X/(1-(1-\lambda)X)$
has a standard beta distribution with parameters shape1
,
shape2
. Since $\log(\lambda)=0$ corresponds to the standard
beta distribution, a summary
of the fitted model performs a
t-test for whether the data belongs to a standard beta distribution
(provided the loge
link for $\lambda$ is used;
this is the default).
Gupta, A. K. and Nadarajah, S. (2004) Handbook of Beta Distribution and Its Applications, NY: Marcel Dekker, Inc.
Lino
,
genbetaII
.y = rbeta(n=1000, exp(0.5), exp(1)) # Standard beta distribution
fit = vglm(y ~ 1, lino, trace=TRUE)
coef(fit, mat=TRUE)
Coef(fit)
head(fitted(fit))
summary(fit)
# Nonstandard beta distribution
y = rlino(n=1000, shape1=2, shape2=3, lambda=exp(1))
fit = vglm(y ~ 1, lino(lshape1=identity, lshape2=identity, ilambda=10))
coef(fit, mat=TRUE)
Run the code above in your browser using DataLab